Scenario modelling for the demonstration fusion reactor (DEMO) has been carried out using a variety of simulation codes. Two DEMO concepts have been analysed: a pulsed tokamak, characterized by rather conventional physics and technology assumptions (DEMO1) and a steady-state tokamak, with moderately advanced physics and technology assumptions (DEMO2). Sensitivity to impurity concentrations, radiation, and heat transport models has been investigated. For DEMO2, the impact of current driven non-inductively by neutral beams has been studied by full Monte Carlo simulations of the fast ion distribution. The results obtained are a part of a more extensive research and development (R&D) effort carried out in the EU in order to develop a viable option for a DEMO reactor, to be adopted after ITER for fusion energy research.
Modelling of pulsed and steady-state DEMO scenarios
Vincenzi P.;
2015
Abstract
Scenario modelling for the demonstration fusion reactor (DEMO) has been carried out using a variety of simulation codes. Two DEMO concepts have been analysed: a pulsed tokamak, characterized by rather conventional physics and technology assumptions (DEMO1) and a steady-state tokamak, with moderately advanced physics and technology assumptions (DEMO2). Sensitivity to impurity concentrations, radiation, and heat transport models has been investigated. For DEMO2, the impact of current driven non-inductively by neutral beams has been studied by full Monte Carlo simulations of the fast ion distribution. The results obtained are a part of a more extensive research and development (R&D) effort carried out in the EU in order to develop a viable option for a DEMO reactor, to be adopted after ITER for fusion energy research.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


