This paper presents an analysis of computer vision methods designed to automate the detection, recognition, and classification of Nephrops norvegicus burrows in underwater videos. The proposed approach seeks to evaluate the accuracy, minimise human error, and standardise the existing manual video analysis process. By leveraging machine learning techniques, the system described in this paper autonomously processes video streams and identifies N. norvegicus burrow openings on the seabed. Additionally, this study investigates data augmentation algorithms to expand an annotated dataset and evaluates the performances of the first results under different configurations.

Machine learning approaches for automated detection of nephrops norvegicus burrows in underwater surveys

Papini O.
;
Cecapolli E.;Domenichetti F.;Martinelli M.;Pieri G.;Reggiannini M.;Zacchetti L.
2025

Abstract

This paper presents an analysis of computer vision methods designed to automate the detection, recognition, and classification of Nephrops norvegicus burrows in underwater videos. The proposed approach seeks to evaluate the accuracy, minimise human error, and standardise the existing manual video analysis process. By leveraging machine learning techniques, the system described in this paper autonomously processes video streams and identifies N. norvegicus burrow openings on the seabed. Additionally, this study investigates data augmentation algorithms to expand an annotated dataset and evaluates the performances of the first results under different configurations.
2025
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Istituto per le Risorse Biologiche e le Biotecnologie Marine - IRBIM - Sede Secondaria Ancona
978-3-031-87662-2
978-3-031-87663-9
Deep learning,Video annotation,Dataset augmentation,Fisheries,Nephrops norvegicus
File in questo prodotto:
File Dimensione Formato  
Paper ICPR 2024 - Preprint.pdf

accesso aperto

Descrizione: Preprint
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF Visualizza/Apri
Paper ICPR 2024 - Published.pdf

solo utenti autorizzati

Descrizione: Version of Record
Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/536808
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact