Hexagonal two-dimensional materials with broken inversion symmetry (as BN or transition metal dichalcogenides) are known to sustain chiral phonons with finite angular momentum, adding a further useful degree of freedom to the extraordinary entangled (electrical, optical, magnetic, and mechanical) properties of these compounds. However, because of lattice symmetry constraints, such chiral modes are constrained to the corners of the Brillouin zone, allowing little freedom for manipulating the chiral features. In this paper, we show how the application of uniaxial strain leads to the existence of unique chiral modes in the vicinity of the zone center. We also show that such strain-induced chiral modes, unlike the ones pinned at the K points, can be efficiently manipulated by modifying the strain itself, which determines the position of these modes in the Brillouin zone. The present paper results add a technique for the engineering of the quantum properties of two-dimensional lattices.

Strain-driven chiral phonons in two-dimensional hexagonal materials

Rostami, Habib;Cappelluti, Emmanuele
Ultimo
2022

Abstract

Hexagonal two-dimensional materials with broken inversion symmetry (as BN or transition metal dichalcogenides) are known to sustain chiral phonons with finite angular momentum, adding a further useful degree of freedom to the extraordinary entangled (electrical, optical, magnetic, and mechanical) properties of these compounds. However, because of lattice symmetry constraints, such chiral modes are constrained to the corners of the Brillouin zone, allowing little freedom for manipulating the chiral features. In this paper, we show how the application of uniaxial strain leads to the existence of unique chiral modes in the vicinity of the zone center. We also show that such strain-induced chiral modes, unlike the ones pinned at the K points, can be efficiently manipulated by modifying the strain itself, which determines the position of these modes in the Brillouin zone. The present paper results add a technique for the engineering of the quantum properties of two-dimensional lattices.
2022
Istituto di Struttura della Materia - ISM - Sede Secondaria Trieste
graphene
chiral phonons
strain
File in questo prodotto:
File Dimensione Formato  
PhysRevB.105.195431.pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/536816
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact