A library of novel nicotinic acid derivatives, focusing on the modification of position 6 of the pyridine ring with (thio)ether functionalities, was mostly produced through an innovative green synthetic approach (Cyrene-based) and evaluated for their α-amylase and α-glucosidase inhibitory activity. Compounds 8 and 44 demonstrated micromolar inhibition against α-amylase (IC50 of 20.5 and 58.1 μM, respectively), with 44 exhibiting a remarkable ∼72% enzyme inactivation level, surpassing the efficacy of the control compound, acarbose. Conversely, 35 and 39 exhibited comparable inhibition values to acarbose against α-glucosidase (IC50 of 32.9 and 26.4 μM, respectively) and a significant enhancement in enzyme inhibition at saturation (∼80-90%). Mechanistic studies revealed that the most promising compounds operated through a noncompetitive inhibition mechanism for both α-amylase and α-glucosidase, offering advantages for function regulation over competitive inhibitors. These inhibitors may open a new perspective for the development of improved hypoglycemic agents for type 2 diabetes treatment.

Nicotinic Acid Derivatives As Novel Noncompetitive α-Amylase and α-Glucosidase Inhibitors for Type 2 Diabetes Treatment

Ballabio, Federico;Nardini, Marco
2024

Abstract

A library of novel nicotinic acid derivatives, focusing on the modification of position 6 of the pyridine ring with (thio)ether functionalities, was mostly produced through an innovative green synthetic approach (Cyrene-based) and evaluated for their α-amylase and α-glucosidase inhibitory activity. Compounds 8 and 44 demonstrated micromolar inhibition against α-amylase (IC50 of 20.5 and 58.1 μM, respectively), with 44 exhibiting a remarkable ∼72% enzyme inactivation level, surpassing the efficacy of the control compound, acarbose. Conversely, 35 and 39 exhibited comparable inhibition values to acarbose against α-glucosidase (IC50 of 32.9 and 26.4 μM, respectively) and a significant enhancement in enzyme inhibition at saturation (∼80-90%). Mechanistic studies revealed that the most promising compounds operated through a noncompetitive inhibition mechanism for both α-amylase and α-glucosidase, offering advantages for function regulation over competitive inhibitors. These inhibitors may open a new perspective for the development of improved hypoglycemic agents for type 2 diabetes treatment.
2024
Istituto di Biofisica - IBF - Sede Secondaria Milano
Istituto di Biofisica - IBF
enzyme inhibitors
medicinal chemistry
nicotinic acid
organic chemistry
synthesis
File in questo prodotto:
File Dimensione Formato  
citarella-et-al-2024-nicotinic-acid-derivatives-as-novel-noncompetitive-α-amylase-and-α-glucosidase-inhibitors-for-type.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 6.03 MB
Formato Adobe PDF
6.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/536931
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact