We investigate attractor quantum neural networks (aQNNs) within the framework of coherence theory. We show that: i) aQNNs are associated to non-coherence-generating quantum channels; ii) the depth of the network is given by the decohering power of the corresponding quantum map; and iii) the attractor associated to an arbitrary input state is the one minimizing their relative entropy. Further, we examine faulty aQNNs described by noisy quantum channels, derive their physical implementation and analyze under which conditions their performance can be enhanced by using entanglement or coherence as external resources.

The role of coherence theory in attractor quantum neural networks

Marconi, Carlo;
2022

Abstract

We investigate attractor quantum neural networks (aQNNs) within the framework of coherence theory. We show that: i) aQNNs are associated to non-coherence-generating quantum channels; ii) the depth of the network is given by the decohering power of the corresponding quantum map; and iii) the attractor associated to an arbitrary input state is the one minimizing their relative entropy. Further, we examine faulty aQNNs described by noisy quantum channels, derive their physical implementation and analyze under which conditions their performance can be enhanced by using entanglement or coherence as external resources.
2022
Istituto Nazionale di Ottica - INO - Sede Secondaria di Sesto Fiorentino
Resource theory of coherence, Quantum neural networks
File in questo prodotto:
File Dimensione Formato  
q-2022-09-08-794.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 583.83 kB
Formato Adobe PDF
583.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/536939
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact