Within the frame of the project CONCERNING (COmpact RamaN lidar for Atmospheric CO2 and ThERmodyNamic ProfilING), we investigated the feasibility and the limits of a ground-based Raman lidar system dedicated to the measurement of CO2 profiles. The performance of the lidar system was evaluated through a set of numerical simulations. The possibility of exploiting both CO2 Raman lines of the ν1:2ν2 resonance was explored. An accurate quantification of the contribution of the Raman O2 lines on the signal and other (e.g., aerosol, absorbing gases) disturbance sources was carried out. The signal integration over the vertical and over time required to reach a useful signal to noise ratio both in day-time and night-time needed for a quantitative analysis of carbon dioxide sources and sinks was evaluated. The above objectives were obtained developing an instrument simulator software consisting of a radiative transfer model able to simulate, in a spectrally resolved manner, all laser light interaction mechanisms with atmospheric constituents, a consistent background signal, and all the devices present in the considered Raman lidar experimental setup. The results indicate that the simulated lidar system, provided to have a low overlap height, could perform measurements on the low troposphere (<1 km) gradients (1-5 ppm) with sufficient precision both in day-time and night-time with an integration time of 1-3 h and a vertical resolution of 75 m. The selected Raman lidar setup is currently being tested and we aim to present preliminary results during the conference.

Performance Simulation and Preliminary Measurements of a Raman Lidar for the Retrieval of CO2 Atmospheric Profiles

Marco Di Paolantonio;DAVIDE DIONISI;Giovanni Giuliano;Gian Luigi Liberti;Donato Summa
2023

Abstract

Within the frame of the project CONCERNING (COmpact RamaN lidar for Atmospheric CO2 and ThERmodyNamic ProfilING), we investigated the feasibility and the limits of a ground-based Raman lidar system dedicated to the measurement of CO2 profiles. The performance of the lidar system was evaluated through a set of numerical simulations. The possibility of exploiting both CO2 Raman lines of the ν1:2ν2 resonance was explored. An accurate quantification of the contribution of the Raman O2 lines on the signal and other (e.g., aerosol, absorbing gases) disturbance sources was carried out. The signal integration over the vertical and over time required to reach a useful signal to noise ratio both in day-time and night-time needed for a quantitative analysis of carbon dioxide sources and sinks was evaluated. The above objectives were obtained developing an instrument simulator software consisting of a radiative transfer model able to simulate, in a spectrally resolved manner, all laser light interaction mechanisms with atmospheric constituents, a consistent background signal, and all the devices present in the considered Raman lidar experimental setup. The results indicate that the simulated lidar system, provided to have a low overlap height, could perform measurements on the low troposphere (<1 km) gradients (1-5 ppm) with sufficient precision both in day-time and night-time with an integration time of 1-3 h and a vertical resolution of 75 m. The selected Raman lidar setup is currently being tested and we aim to present preliminary results during the conference.
2023
Istituto di Scienze Marine - ISMAR - Sede Secondaria Roma
lidar, CO2
File in questo prodotto:
File Dimensione Formato  
2023_Performance_EGU.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 288.56 kB
Formato Adobe PDF
288.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/537076
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact