Portable optical spectrometers are crucial devices for bio-chemical sensing and spectroscopic applications whereby robust, compact and cost-effective set-ups are desirable. However, existing miniaturized instruments typically struggle to achieve broad wavelength operation and high spectral resolution at the same time. Here, an all-fiber optical spectrometer based on two cascaded Bragg gratings is devised and demonstrated, showing a record resolution and a wavelength span-to-resolution ratio larger than that of most miniature broadband spectrometers reported to date. Thanks to a synchronous control of the grating lengths and to a unique combination of their reflection features, spectral analysis of incoherent light within 1 pm is achieved. On the other hand, fast and reproducible wavelength tuning over several nanometers on a millisecond-timescale is ensured by mechanical stretching of the internal fiber, limited only by the actuator’s dynamic range. A striking evidence of the spectrometer capabilities is provided with Doppler-limited spectroscopy of gas absorption bands performed with a near-infrared LED source. The observed spectra exhibit lineshapes comparable with those obtained by laser-based set-ups and the retrieved gas-line parameters are in agreement with existing spectroscopic databases. The spectrometer lends itself to applications in high-resolution interrogation of multiple fiber-optic sensors as well as broadband imaging with supercontinuum light.

All-fiber high-resolution incoherent broadband spectrometer

Capezzuto, Marialuisa;D'Ambrosio, Davide;Giorgini, Antonio;Malara, Pietro;Avino, Saverio;Gagliardi, Gianluca
2024

Abstract

Portable optical spectrometers are crucial devices for bio-chemical sensing and spectroscopic applications whereby robust, compact and cost-effective set-ups are desirable. However, existing miniaturized instruments typically struggle to achieve broad wavelength operation and high spectral resolution at the same time. Here, an all-fiber optical spectrometer based on two cascaded Bragg gratings is devised and demonstrated, showing a record resolution and a wavelength span-to-resolution ratio larger than that of most miniature broadband spectrometers reported to date. Thanks to a synchronous control of the grating lengths and to a unique combination of their reflection features, spectral analysis of incoherent light within 1 pm is achieved. On the other hand, fast and reproducible wavelength tuning over several nanometers on a millisecond-timescale is ensured by mechanical stretching of the internal fiber, limited only by the actuator’s dynamic range. A striking evidence of the spectrometer capabilities is provided with Doppler-limited spectroscopy of gas absorption bands performed with a near-infrared LED source. The observed spectra exhibit lineshapes comparable with those obtained by laser-based set-ups and the retrieved gas-line parameters are in agreement with existing spectroscopic databases. The spectrometer lends itself to applications in high-resolution interrogation of multiple fiber-optic sensors as well as broadband imaging with supercontinuum light.
2024
Istituto Nazionale di Ottica - INO
optical spectrometer , sensing
File in questo prodotto:
File Dimensione Formato  
oe-32-4-5353.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.99 MB
Formato Adobe PDF
3.99 MB Adobe PDF Visualizza/Apri
Your manuscript 505134 has been selected for an Editor_s Pick.pdf

solo utenti autorizzati

Descrizione: Editorial Communication
Tipologia: Altro materiale allegato
Licenza: Altro tipo di licenza
Dimensione 71.19 kB
Formato Adobe PDF
71.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/537103
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact