Flux Variability Analysis (FVA) is an important method to analyze the range of fluxes of a metabolic network. FVA consists in performing a large number of independent optimization problems, to obtain the maximum and minimum flux through each reaction in the network. Although several strategies to make the computation more efficient have been proposed, the computation time of an FVA can still be limiting. We present a two-step procedure to accelerate the FVA computational time that exploits the large presence within metabolic networks of sets of reactions that necessarily have an identical optimal flux value or only differ by a multiplication constant. The first step identifies such sets of reactions. The second step computes the maximum and minimum flux value for just one element of each of set, reducing the total number of optimization problems compared to the classical FVA. We show that, when applied to any metabolic network model included in the BiGG database, our FVA algorithm reduces the total number of optimization problems of about 35 %, and the computation time of FVA of about 30%.

An Efficient Implementation of Flux Variability Analysis for Metabolic Networks

Galuzzi, BG;
2023

Abstract

Flux Variability Analysis (FVA) is an important method to analyze the range of fluxes of a metabolic network. FVA consists in performing a large number of independent optimization problems, to obtain the maximum and minimum flux through each reaction in the network. Although several strategies to make the computation more efficient have been proposed, the computation time of an FVA can still be limiting. We present a two-step procedure to accelerate the FVA computational time that exploits the large presence within metabolic networks of sets of reactions that necessarily have an identical optimal flux value or only differ by a multiplication constant. The first step identifies such sets of reactions. The second step computes the maximum and minimum flux value for just one element of each of set, reducing the total number of optimization problems compared to the classical FVA. We show that, when applied to any metabolic network model included in the BiGG database, our FVA algorithm reduces the total number of optimization problems of about 35 %, and the computation time of FVA of about 30%.
2023
Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC)
9783031311826
Constrained-based modeling
Flux Balance Analysis
Flux variability Analysis
Metabolic networks
File in questo prodotto:
File Dimensione Formato  
Galuzzi-2023-Comm Comp Informat Sci-VoR.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/537133
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact