We introduce the adaptive vertical farm (AVF), an innovative and sustainable vertical farming technology, and investigate parameter estimation for a dynamic crop growth model of lettuce. The goal is to tune parameters for accurate height prediction based on dry mass production. We numerically study the identifiability of the parameters of the growth model starting from information collected on the field, and then use the identified model to forecast the growth of plants using real-world measurements. Parameter estimation is performed by solving an optimization problem that aims at minimizing the difference between the measured and predicted dry mass over a given temporal window. Preliminary numerical results demonstrate the effectiveness of the proposed approach using both synthetic and real-world datasets.

Parameter Estimation of a Dynamic Growth Model for Lettuce in an Adaptive Vertical Farm

Gaggero M.
;
2024

Abstract

We introduce the adaptive vertical farm (AVF), an innovative and sustainable vertical farming technology, and investigate parameter estimation for a dynamic crop growth model of lettuce. The goal is to tune parameters for accurate height prediction based on dry mass production. We numerically study the identifiability of the parameters of the growth model starting from information collected on the field, and then use the identified model to forecast the growth of plants using real-world measurements. Parameter estimation is performed by solving an optimization problem that aims at minimizing the difference between the measured and predicted dry mass over a given temporal window. Preliminary numerical results demonstrate the effectiveness of the proposed approach using both synthetic and real-world datasets.
2024
Istituto di iNgegneria del Mare - INM (ex INSEAN)
Adaptive vertical farm
crop growth model
identification
optimization
parameter estimation
File in questo prodotto:
File Dimensione Formato  
CASE2024.pdf

solo utenti autorizzati

Descrizione: CASE2024
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 706.66 kB
Formato Adobe PDF
706.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
CASE_2024_postprint.pdf

solo utenti autorizzati

Descrizione: CASE2024
Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 384.9 kB
Formato Adobe PDF
384.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/537228
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact