In this work, we present the first experimental results on a Schottky photodetector based on Silicon Carbide (SiC) and Graphene (Gr) designed to operate in the visible spectral range. While SiC has been extensively investigated for various applications in the ultraviolet domain, there are only a few works in the visible range, where SiC exhibits negligible optical absorption. To overcome such intrinsic limit of SiC, we exploit the properties of a single layer of Gr to enhance, significantly, the photodetection performance of the device operating, in our experiments, at the wavelength of λ=633 nm. From the current-voltage (I-V) characteristics, a series resistance of 3.7 kΩ, an ideality factor of 8.4, and the zero-bias Schottky barrier height of 0.755 eV have been calculated. Finally, the internal responsivity, as function of the reverse bias applied to the device, has been measured demonstrating a maximum value exceeding 1 mA/W at -5V.

Graphene/4H-SiC Schottky photodetector operating in the visible spectrum range

Crisci, Teresa;Gioffrè, Mariano;Medugno, Mario;Della Corte, Francesco G.;Casalino, Maurizio
Ultimo
2023

Abstract

In this work, we present the first experimental results on a Schottky photodetector based on Silicon Carbide (SiC) and Graphene (Gr) designed to operate in the visible spectral range. While SiC has been extensively investigated for various applications in the ultraviolet domain, there are only a few works in the visible range, where SiC exhibits negligible optical absorption. To overcome such intrinsic limit of SiC, we exploit the properties of a single layer of Gr to enhance, significantly, the photodetection performance of the device operating, in our experiments, at the wavelength of λ=633 nm. From the current-voltage (I-V) characteristics, a series resistance of 3.7 kΩ, an ideality factor of 8.4, and the zero-bias Schottky barrier height of 0.755 eV have been calculated. Finally, the internal responsivity, as function of the reverse bias applied to the device, has been measured demonstrating a maximum value exceeding 1 mA/W at -5V.
2023
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI - Sede Secondaria Napoli
Graphene, Schottky photodetector, Silicon Carbide
File in questo prodotto:
File Dimensione Formato  
2023 EOSAM - Elisa Mallamace.pdf

accesso aperto

Licenza: Creative commons
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/537251
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact