Breast cancer is characterized by an acidic micro-environment. Acidic extracellular pH gives cancer cells an evolutionary advantage, hence, neutralization of the extracellular pH has been considered as a potential therapeutic strategy. To address the issue of systemic pH alteration, an approach based on the targeted delivery of the buffering solution to the tumor region is investigated. The method relies on the use of low frequency ultrasound and sono-sensitive liposomes loaded with buffers at alkaline pH (LipHUS). After the i.v. injection of LipHUS, the application of ultrasound (US) at the sites of the pathology induces a local increase of pH that results highly effective in i) inhibiting primary tumor growth, ii) reducing tumor recurrence after surgery, and iii) suppressing metastases’ formation. The experiments are carried out on a triple negative breast cancer mouse model. The results obtained demonstrate that localized and triggered release of bicarbonate or PBS buffer from sonosensitive liposomes represents an efficient therapeutic tool for treating triple-negative breast cancer. This approach holds promise for potential clinical translation.

In Situ Insonation of Alkaline Buffer Containing Liposomes Leads to a Net Improvement of the Therapeutic Outcome in a Triple Negative Breast Cancer Murine Model

Longo, Dario Livio;Botto, Elena;Aime, Silvio;
2023

Abstract

Breast cancer is characterized by an acidic micro-environment. Acidic extracellular pH gives cancer cells an evolutionary advantage, hence, neutralization of the extracellular pH has been considered as a potential therapeutic strategy. To address the issue of systemic pH alteration, an approach based on the targeted delivery of the buffering solution to the tumor region is investigated. The method relies on the use of low frequency ultrasound and sono-sensitive liposomes loaded with buffers at alkaline pH (LipHUS). After the i.v. injection of LipHUS, the application of ultrasound (US) at the sites of the pathology induces a local increase of pH that results highly effective in i) inhibiting primary tumor growth, ii) reducing tumor recurrence after surgery, and iii) suppressing metastases’ formation. The experiments are carried out on a triple negative breast cancer mouse model. The results obtained demonstrate that localized and triggered release of bicarbonate or PBS buffer from sonosensitive liposomes represents an efficient therapeutic tool for treating triple-negative breast cancer. This approach holds promise for potential clinical translation.
2023
Istituto di Biologia e Biotecnologia Agraria - IBBA - Sede Secondaria Pisa
bicarbonate
breast cancer
liposomes
microenvironment pH
recurrence treatment
ultrasound
File in questo prodotto:
File Dimensione Formato  
AdvHealthcareMaterials_2023_liposome_buffer_4T1_DelliCastelli.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.15 MB
Formato Adobe PDF
3.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/537380
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact