To develop promising dual atom catalysts (DACs) for enhancing valuable C2+ products in CO2 electroreduction (CO2RR), we need a molecular level understanding of the interaction between reaction intermediates, metal atoms, and substrates. NiMn on graphitic carbon nitride (g-C3N4) was experimentally reported to be an efficient CO2RR catalyst. Here, we studied the origin of its activity. We used integrated crystal orbital Hamiltonian population (ICOHP) analysis along the reaction coordinate of the carbon–carbon (C-C) coupling reaction to understand how the electronic structures of NiMn doped on pristine (NiMn@g-C3N4) and N-vacancy graphitic carbon nitride (NiMn@V-g-C3N4) affect the reaction. NiMn@V-g-C3N4 selectively produces ethanol at low limiting potential −0.55 V and a low kinetic barrier (0.78 eV) for *CO+*CHO→*COCHO. At this step, electron donation from the NiMn in the N-vacancy to the adsorbate is essential. Tricoordinated Ni atom at the vacancy site has a stable oxidation state 0 with a fully filled 3d10 configuration, while Mn atom takes +2 oxidation state with a half-filled 3d5 configuration. ICOHP shows that these electronic configurations result in a moderate binding strength of key intermediates near the Ni while facilitating the flexible change in Mn-C to Mn-O binding for producing *COCHO, thus promoting the formation of ethanol.

Theoretical insight on why N-vacancy promotes the selective CO2 reduction to ethanol on NiMn doped graphitic carbon nitride sheets

Roongcharoen, Thantip;
2022

Abstract

To develop promising dual atom catalysts (DACs) for enhancing valuable C2+ products in CO2 electroreduction (CO2RR), we need a molecular level understanding of the interaction between reaction intermediates, metal atoms, and substrates. NiMn on graphitic carbon nitride (g-C3N4) was experimentally reported to be an efficient CO2RR catalyst. Here, we studied the origin of its activity. We used integrated crystal orbital Hamiltonian population (ICOHP) analysis along the reaction coordinate of the carbon–carbon (C-C) coupling reaction to understand how the electronic structures of NiMn doped on pristine (NiMn@g-C3N4) and N-vacancy graphitic carbon nitride (NiMn@V-g-C3N4) affect the reaction. NiMn@V-g-C3N4 selectively produces ethanol at low limiting potential −0.55 V and a low kinetic barrier (0.78 eV) for *CO+*CHO→*COCHO. At this step, electron donation from the NiMn in the N-vacancy to the adsorbate is essential. Tricoordinated Ni atom at the vacancy site has a stable oxidation state 0 with a fully filled 3d10 configuration, while Mn atom takes +2 oxidation state with a half-filled 3d5 configuration. ICOHP shows that these electronic configurations result in a moderate binding strength of key intermediates near the Ni while facilitating the flexible change in Mn-C to Mn-O binding for producing *COCHO, thus promoting the formation of ethanol.
2022
Istituto di Chimica dei Composti Organo Metallici - ICCOM - Sede Secondaria Pisa
C-C coupling
CO2
reduction
Electronic structure
Graphitic carbon nitride
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0169433222010790-main.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 13.16 MB
Formato Adobe PDF
13.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
j.apsusc.2022.153527.pdf

Open Access dal 01/05/2024

Descrizione: “This document is the Accepted Manuscript version of a Published Work that appeared in final form in https://doi.org/10.1016/j.apsusc.2022.153527."
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.4 MB
Formato Adobe PDF
2.4 MB Adobe PDF Visualizza/Apri
1-s2.0-S0169433222010790-mmc1.pdf

solo utenti autorizzati

Descrizione: supporting information
Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/537571
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact