CO2 conversion to valuable products on ZnO (0001) monolayer doped by transition metals (TM-ZnO where TM is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) was investigated by density functional theory calculation. The results show that doping TMs can reduce the overpotential for CO2 reduction reaction (CRR) compared to pristine ZnO. Significantly, the oxidation state of TMs by different d-orbital occupancy results in a change of the electronic properties of the catalysts, leading to a difference in reactivity, reaction pathway, and selectivity of the final products. Early TMs (Sc to Cr) showing oxidation state 3+ prefer CH4 as a product while late TMs (Mn to Cu) showing oxidation state 2+ can make HCOOH. Remarkably, Co-ZnO can produce HCOOH with ultra-low overpotential at 0.02 V and can further produce CH3OH with an overpotential of only 0.45 V. Therefore, Co-ZnO monolayer is suggested as a promising CRR catalyst for experimental research. This work sheds light on the rational design of low-cost metal oxides with high stability, activity, and product selectivity for CRR and other reactions.

Effect of 3d-transition metals doped in ZnO monolayers on the CO2 electrochemical reduction to valuable products: first principles study

Roongcharoen, Thantip;
2021

Abstract

CO2 conversion to valuable products on ZnO (0001) monolayer doped by transition metals (TM-ZnO where TM is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) was investigated by density functional theory calculation. The results show that doping TMs can reduce the overpotential for CO2 reduction reaction (CRR) compared to pristine ZnO. Significantly, the oxidation state of TMs by different d-orbital occupancy results in a change of the electronic properties of the catalysts, leading to a difference in reactivity, reaction pathway, and selectivity of the final products. Early TMs (Sc to Cr) showing oxidation state 3+ prefer CH4 as a product while late TMs (Mn to Cu) showing oxidation state 2+ can make HCOOH. Remarkably, Co-ZnO can produce HCOOH with ultra-low overpotential at 0.02 V and can further produce CH3OH with an overpotential of only 0.45 V. Therefore, Co-ZnO monolayer is suggested as a promising CRR catalyst for experimental research. This work sheds light on the rational design of low-cost metal oxides with high stability, activity, and product selectivity for CRR and other reactions.
2021
Istituto di Chimica dei Composti Organo Metallici - ICCOM - Sede Secondaria Pisa
CO2
reduction reaction
DFT
Transition metals
ZnO monolayer
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0169433221004566-main.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.75 MB
Formato Adobe PDF
5.75 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
j.apsusc.2021.149380.pdf

Open Access dal 26/02/2023

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 3.18 MB
Formato Adobe PDF
3.18 MB Adobe PDF Visualizza/Apri
1-s2.0-S0169433221004566-mmc1.pdf

solo utenti autorizzati

Descrizione: supporting information
Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.57 MB
Formato Adobe PDF
4.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/537572
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 30
social impact