In the context of emerging quantum technologies, this work marks an important progress towards practical quantum optical systems in the continuous variable regime. It shows the feasibility of experiments where non-Gaussian state generation entirely relies on plug-and-play components from guided-wave optics technologies. This strategy is successfully demonstrated with the heralded preparation of low amplitude Schrödinger cat states via single-photon subtraction from a squeezed vacuum. All stages of the experiment are based on off-the-shelf fiber components. This leads to a stable, compact, and easily re-configurable realization, fully compatible with existing fiber networks and, more in general, with future out-of-the-laboratory applications.
Plug-and-play generation of non-Gaussian states of light at a telecom wavelength
Gabbrielli, TeclaCo-primo
;Zavatta, Alessandro;
2022
Abstract
In the context of emerging quantum technologies, this work marks an important progress towards practical quantum optical systems in the continuous variable regime. It shows the feasibility of experiments where non-Gaussian state generation entirely relies on plug-and-play components from guided-wave optics technologies. This strategy is successfully demonstrated with the heralded preparation of low amplitude Schrödinger cat states via single-photon subtraction from a squeezed vacuum. All stages of the experiment are based on off-the-shelf fiber components. This leads to a stable, compact, and easily re-configurable realization, fully compatible with existing fiber networks and, more in general, with future out-of-the-laboratory applications.| File | Dimensione | Formato | |
|---|---|---|---|
|
oe-30-25-45195.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
4.87 MB
Formato
Adobe PDF
|
4.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


