The Radiation Environment Monitor for Energetic Cosmic rays (REMEC) is a micro-sat mission developed to reach deep space to study, for the first time outside the Earth's magnetosphere, Solar Energetic Particles (SEP). The main scientific payloads consist of the Penetrating particle ANalyzer magnetic spectrometer (Pix.PAN), based on Timepix4 technology, and the HardPix radiation monitors. The trajectory design developed for the REMEC mission phases 0-A and B1 is described herein. First, possible operational orbits in the Sun–Earth (SE) and Earth–Moon (EM) systems are identified. Then, by exploiting the Circular Restricted Three Body Problem (CR3BP), feasible trajectories are calculated for both a baseline and a backup option. The dynamical model for the baseline case is then refined, including the direct effect of the Moon on the dynamic. In addition, propulsion system requirements were to be considered in the analysis, and an orbit-raising strategy was developed. Finally, the results obtained with the refined dynamic, both on the operational orbit and the transfer trajectory, and with the orbit-raising strategy are shown and commented.

Mission analysis for the Radiation Environment Monitor for Energetic Cosmic rays (REMEC) mission

Elisa Maria Alessi;
2025

Abstract

The Radiation Environment Monitor for Energetic Cosmic rays (REMEC) is a micro-sat mission developed to reach deep space to study, for the first time outside the Earth's magnetosphere, Solar Energetic Particles (SEP). The main scientific payloads consist of the Penetrating particle ANalyzer magnetic spectrometer (Pix.PAN), based on Timepix4 technology, and the HardPix radiation monitors. The trajectory design developed for the REMEC mission phases 0-A and B1 is described herein. First, possible operational orbits in the Sun–Earth (SE) and Earth–Moon (EM) systems are identified. Then, by exploiting the Circular Restricted Three Body Problem (CR3BP), feasible trajectories are calculated for both a baseline and a backup option. The dynamical model for the baseline case is then refined, including the direct effect of the Moon on the dynamic. In addition, propulsion system requirements were to be considered in the analysis, and an orbit-raising strategy was developed. Finally, the results obtained with the refined dynamic, both on the operational orbit and the transfer trajectory, and with the orbit-raising strategy are shown and commented.
2025
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI - Sede Secondaria Milano
Bicircular restricted four body problem
Circular restricted three body problem
Mission analysis
Orbit-raising
REMEC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/537710
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact