Controlling the photon statistics of light is paramount for quantum science and technologies. Recently, we demonstrated that transmitting resonant laser light past an ensemble of two-level emitters can result in a stream of single photons or excess photon pairs. This transformation is due to quantum interference between the transmitted laser light and the incoherently scattered photon pairs [Prasad et al., Nat. Photonics 14, 719 (2020)NPAHBY1749-488510.1038/s41566-020-0692-z]. Here, using the dispersion of the atomic medium, we actively control the relative quantum phase between these two components. We thereby realize a tunable two-photon interferometer and observe interference fringes in the normalized photon coincidence rate. When tuning the relative phase, the coincidence rate varies periodically, giving rise to a continuous modification of the photon statistics from antibunching to bunching. Beyond the fundamental insight that there exists a tunable quantum phase between incoherent and coherent light that dictates the photon statistics, our results lend themselves to the development of novel quantum light sources.

Tailoring Photon Statistics with an Atom-Based Two-Photon Interferometer

Schemmer M.;
2023

Abstract

Controlling the photon statistics of light is paramount for quantum science and technologies. Recently, we demonstrated that transmitting resonant laser light past an ensemble of two-level emitters can result in a stream of single photons or excess photon pairs. This transformation is due to quantum interference between the transmitted laser light and the incoherently scattered photon pairs [Prasad et al., Nat. Photonics 14, 719 (2020)NPAHBY1749-488510.1038/s41566-020-0692-z]. Here, using the dispersion of the atomic medium, we actively control the relative quantum phase between these two components. We thereby realize a tunable two-photon interferometer and observe interference fringes in the normalized photon coincidence rate. When tuning the relative phase, the coincidence rate varies periodically, giving rise to a continuous modification of the photon statistics from antibunching to bunching. Beyond the fundamental insight that there exists a tunable quantum phase between incoherent and coherent light that dictates the photon statistics, our results lend themselves to the development of novel quantum light sources.
2023
Istituto Nazionale di Ottica - INO
Quantum optics, nanophotonics, Photon statistics
File in questo prodotto:
File Dimensione Formato  
PhysRevLett.131.183601.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/537765
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact