The present work aims to address the physical properties of different drought types under near-future climates in the Mediterranean. To do so, we use a multi-model mean of the bias-adjusted and downscaled product of five Earth System Models participating in the Coupled Model Intercomparison Project—phase6 (CMIP6), provided by Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), under four shared socioeconomic pathways (SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5) for the period 2021–2060, to estimate the Standardized Precipitation Evapotranspiration Index (SPEI) at 1-, 6-, and 12-month time scales, and address the meteorological, agricultural, and hydrological drought, respectively.
Drought characteristics in Mediterranean under future climate change
Chunxue YangUltimo
Supervision
2023
Abstract
The present work aims to address the physical properties of different drought types under near-future climates in the Mediterranean. To do so, we use a multi-model mean of the bias-adjusted and downscaled product of five Earth System Models participating in the Coupled Model Intercomparison Project—phase6 (CMIP6), provided by Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), under four shared socioeconomic pathways (SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5) for the period 2021–2060, to estimate the Standardized Precipitation Evapotranspiration Index (SPEI) at 1-, 6-, and 12-month time scales, and address the meteorological, agricultural, and hydrological drought, respectively.| File | Dimensione | Formato | |
|---|---|---|---|
|
s41612-023-00458-4.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
9.39 MB
Formato
Adobe PDF
|
9.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


