The edible mushroom Agrocybe aegerita produces a ribotoxin-like protein known as Ageritin. In this work, the gene encoding Ageritin was characterized by sequence analysis. It contains several typical features of fungal genes such as three short introns (60, 55 and 69 bp) located at the 5′ region of the coding sequence and typical splice junctions. This sequence codes for a precursor of 156 amino acids (~17-kDa) containing an additional N-terminal peptide of 21 amino acid residues, absent in the purified toxin (135 amino acid residues; ~15-kDa). The presence of 17-kDa and 15-kDa forms was investigated by Western blot in specific parts of fruiting body and in mycelia of A. aegerita. Data show that the 15-kDa Ageritin is the only form retrieved in the fruiting body and the principal form in mycelium. The immunolocalization by confocal laser scanning microscopy and transmission electron microscopy proves that Ageritin has vacuolar localization in hyphae. Coupling these data with a bioinformatics approach, we suggest that the N-terminal peptide of Ageritin (not found in the purified toxin) is a new signal peptide in fungi involved in intracellular routing from endoplasmic reticulum to vacuole, necessary for self-defense of A. aegerita ribosomes from Ageritin toxicity.

Gene organization, expression, and localization of ribotoxin-like protein ageritin in fruiting body and mycelium of Agrocybe aegerita

Landi N.;
2020

Abstract

The edible mushroom Agrocybe aegerita produces a ribotoxin-like protein known as Ageritin. In this work, the gene encoding Ageritin was characterized by sequence analysis. It contains several typical features of fungal genes such as three short introns (60, 55 and 69 bp) located at the 5′ region of the coding sequence and typical splice junctions. This sequence codes for a precursor of 156 amino acids (~17-kDa) containing an additional N-terminal peptide of 21 amino acid residues, absent in the purified toxin (135 amino acid residues; ~15-kDa). The presence of 17-kDa and 15-kDa forms was investigated by Western blot in specific parts of fruiting body and in mycelia of A. aegerita. Data show that the 15-kDa Ageritin is the only form retrieved in the fruiting body and the principal form in mycelium. The immunolocalization by confocal laser scanning microscopy and transmission electron microscopy proves that Ageritin has vacuolar localization in hyphae. Coupling these data with a bioinformatics approach, we suggest that the N-terminal peptide of Ageritin (not found in the purified toxin) is a new signal peptide in fungi involved in intracellular routing from endoplasmic reticulum to vacuole, necessary for self-defense of A. aegerita ribosomes from Ageritin toxicity.
2020
Istituto di Cristallografia - IC
Agrocybe aegerita
CDNA extraction
Immunolocalization
Protein routing
Ribotoxin-like proteins
Signal peptide
File in questo prodotto:
File Dimensione Formato  
22_Gene Organization, Expression.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 24.68 MB
Formato Adobe PDF
24.68 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/538346
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact