The widely investigated oxygen reduction reaction (ORR) is well-known to proceed via two competing routes, involving two or four electrons, and yielding different reaction products, respectively. Both pathways are believed to share a common, elusive intermediate, namely, the hydroperoxyl radical. By exploiting a cobalt single-atom biomimetic model catalyst, based on a self-assembled monolayer of Co-porphyrins grown on an almost free-standing graphene sheet, we identify, in situ at room temperature in O2+H2O atmosphere, a hydroperoxyl-water cluster that is stabilized at the Co single-metal atom catalytic site. We show that the interplay between charge transfer, dipole and H-bonding, and water solvation behavior actually determines the hydroperoxyl-water complex stability, the Co-OOH bonding geometry, and, prospectively, opens to the engineered control of the selectivity of ORR pathways.
Single Metal Atom Catalysts and ORR: H-Bonding, Solvation, and the Elusive Hydroperoxyl Intermediate
Modesti, Silvio;Peressi, Maria;Vesselli, Erik
2022
Abstract
The widely investigated oxygen reduction reaction (ORR) is well-known to proceed via two competing routes, involving two or four electrons, and yielding different reaction products, respectively. Both pathways are believed to share a common, elusive intermediate, namely, the hydroperoxyl radical. By exploiting a cobalt single-atom biomimetic model catalyst, based on a self-assembled monolayer of Co-porphyrins grown on an almost free-standing graphene sheet, we identify, in situ at room temperature in O2+H2O atmosphere, a hydroperoxyl-water cluster that is stabilized at the Co single-metal atom catalytic site. We show that the interplay between charge transfer, dipole and H-bonding, and water solvation behavior actually determines the hydroperoxyl-water complex stability, the Co-OOH bonding geometry, and, prospectively, opens to the engineered control of the selectivity of ORR pathways.File | Dimensione | Formato | |
---|---|---|---|
armillotta-et-al-2022-single-metal-atom-catalysts-and-orr-h-bonding-solvation-and-the-elusive-hydroperoxyl-intermediate-1.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
6.15 MB
Formato
Adobe PDF
|
6.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.