: Identification of neoplastic and dysplastic brain tissues is of paramount importance for improving the outcomes of neurosurgical procedures. This study explores the combined application of fluorescence, Raman and diffuse reflectance spectroscopies for the detection and classification of brain tumor and cortical dysplasia with a label-free modality. Multivariate analysis was performed to evaluate classification accuracies of these techniques-employed both in individual and multimodal configuration-obtaining high sensitivity and specificity. In particular, the proposed multimodal approach allowed discriminating tumor/dysplastic tissues against control tissue with 91%/86% sensitivity and 100%/100% specificity, respectively, whereas tumor from dysplastic tissues were discriminated with 89% sensitivity and 86% specificity. Hence, multimodal optical spectroscopy allows reliably differentiating these pathologies using a non-invasive, label-free approach that is faster than the gold standard technique and does not require any tissue processing, offering the potential for the clinical translation of the technology.

Dysplasia and tumor discrimination in brain tissues by combined fluorescence, Raman, and diffuse reflectance spectroscopies

Baria E.;Cicchi R.
;
Pavone F. S.
2023

Abstract

: Identification of neoplastic and dysplastic brain tissues is of paramount importance for improving the outcomes of neurosurgical procedures. This study explores the combined application of fluorescence, Raman and diffuse reflectance spectroscopies for the detection and classification of brain tumor and cortical dysplasia with a label-free modality. Multivariate analysis was performed to evaluate classification accuracies of these techniques-employed both in individual and multimodal configuration-obtaining high sensitivity and specificity. In particular, the proposed multimodal approach allowed discriminating tumor/dysplastic tissues against control tissue with 91%/86% sensitivity and 100%/100% specificity, respectively, whereas tumor from dysplastic tissues were discriminated with 89% sensitivity and 86% specificity. Hence, multimodal optical spectroscopy allows reliably differentiating these pathologies using a non-invasive, label-free approach that is faster than the gold standard technique and does not require any tissue processing, offering the potential for the clinical translation of the technology.
2023
Istituto Nazionale di Ottica - INO
multimodal spectroscopy
brain tumour
File in questo prodotto:
File Dimensione Formato  
2023 Biomed Opt Exp.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.94 MB
Formato Adobe PDF
3.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/538442
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact