Placing quantum materials into optical cavities provides a unique platform for controlling quantum cooperative properties of matter, by both weak and strong light–matter coupling1,2. Here we report experimental evidence of reversible cavity control of a metal-to-insulator phase transition in a correlated solid-state material. We embed the charge density wave material 1T-TaS2 into cryogenic tunable terahertz cavities3 and show that a switch between conductive and insulating behaviours, associated with a large change in the sample temperature, is obtained by mechanically tuning the distance between the cavity mirrors and their alignment. The large thermal modification observed is indicative of a Purcell-like scenario in which the spectral profile of the cavity modifies the energy exchange between the material and the external electromagnetic field. Our findings provide opportunities for controlling the thermodynamics and macroscopic transport properties of quantum materials by engineering their electromagnetic environment.

Cavity-mediated thermal control of metal-to-insulator transition in 1T-TaS2

Dal Zilio, Simone;
2023

Abstract

Placing quantum materials into optical cavities provides a unique platform for controlling quantum cooperative properties of matter, by both weak and strong light–matter coupling1,2. Here we report experimental evidence of reversible cavity control of a metal-to-insulator phase transition in a correlated solid-state material. We embed the charge density wave material 1T-TaS2 into cryogenic tunable terahertz cavities3 and show that a switch between conductive and insulating behaviours, associated with a large change in the sample temperature, is obtained by mechanically tuning the distance between the cavity mirrors and their alignment. The large thermal modification observed is indicative of a Purcell-like scenario in which the spectral profile of the cavity modifies the energy exchange between the material and the external electromagnetic field. Our findings provide opportunities for controlling the thermodynamics and macroscopic transport properties of quantum materials by engineering their electromagnetic environment.
2023
Istituto Officina dei Materiali - IOM -
quantum materials; optics
File in questo prodotto:
File Dimensione Formato  
2210.02346v2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 5.46 MB
Formato Adobe PDF
5.46 MB Adobe PDF Visualizza/Apri
s41586-023-06596-2.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 18.8 MB
Formato Adobe PDF
18.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/538448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 39
social impact