In the realm of fundamental quantum science and technologies, non-classical states of light, such as single-photon Fock states, are widely studied. However, current standards and metrological procedures are not optimized for low light levels. Progress in this crucial scientific domain depends on innovative metrology approaches, utilizing reliable devices based on quantum effects. A new generation of molecule-based single-photon sources is presented, combining their integration in a polymeric micro-lens with pulsed excitation schemes, thereby realizing suitable resources in quantum radiometry. The strategy enhances the efficiency of generated single photon pulses and improves stability, providing a portable source at 784.7 nm that maintains consistent performance even through a cooling and heating cycle. The calibration of a single-photon avalanche detector is demonstrated using light sources with different photon statistics, and the advantages of the single-molecule device are discussed. A relative uncertainty on the intrinsic detection efficiency well below 1% is attained, representing a new benchmark in the field.

Advances in Quantum Metrology with Dielectrically Structured Single Photon Sources Based on Molecules

Pietro Lombardi
Primo
;
Juergen Mony;Rocco Duquennoy;Ramin Emadi;Maja Colautti;Costanza Toninelli
Ultimo
2024

Abstract

In the realm of fundamental quantum science and technologies, non-classical states of light, such as single-photon Fock states, are widely studied. However, current standards and metrological procedures are not optimized for low light levels. Progress in this crucial scientific domain depends on innovative metrology approaches, utilizing reliable devices based on quantum effects. A new generation of molecule-based single-photon sources is presented, combining their integration in a polymeric micro-lens with pulsed excitation schemes, thereby realizing suitable resources in quantum radiometry. The strategy enhances the efficiency of generated single photon pulses and improves stability, providing a portable source at 784.7 nm that maintains consistent performance even through a cooling and heating cycle. The calibration of a single-photon avalanche detector is demonstrated using light sources with different photon statistics, and the advantages of the single-molecule device are discussed. A relative uncertainty on the intrinsic detection efficiency well below 1% is attained, representing a new benchmark in the field.
2024
Istituto Nazionale di Ottica - INO
direct laser writing
quantum emitters
quantum radiometry
scalability
single-photon sources
File in questo prodotto:
File Dimensione Formato  
Lombardi2024.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/538959
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact