One of the major challenges of drug delivery is the development of suitable carriers for therapeutic molecules. In this work, a novel nanoformulation based on superparamagnetic nanoclusters [magnetic nanocrystal clusters (MNCs)] is presented. In order to control the size of the nanoclusters and the density of magnetic cores, several parameters were evaluated and tuned. Then, MNCs were functionalized with a polydopamine layer (MNC@PDO) to improve their stability in aqueous solution, to increase density of functional groups and to obtain a nanosystem suitable for drug-controlled release. Finally, cisplatin was grafted on the surface of MNC@PDO to exploit the system as a magnetic field-guided anticancer delivery system. The biocompatibility of MNC@PDO and the cytotoxic effects of MNC@PDO-cisplatin complex were determined against human cervical cancer (HeLa) and human breast adenocarcinoma (MCF-7) cells. In vitro studies demonstrated that the MNC@PDO-cisplatin complexes inhibited the cellular proliferation by a dose-dependent effect. Therefore, by applying an external magnetic field, the released drug exerted its effect on a specific target area. In summary, the MNC@PDO nanosystem has a great potential to be used in targeted nanomedicine for the delivery of other drugs or biofunctional molecules.

Design and Application of Cisplatin-Loaded Magnetic Nanoparticle Clusters for Smart Chemotherapy

Mandriota G.;Di Corato R.
;
De Castro F.;
2019

Abstract

One of the major challenges of drug delivery is the development of suitable carriers for therapeutic molecules. In this work, a novel nanoformulation based on superparamagnetic nanoclusters [magnetic nanocrystal clusters (MNCs)] is presented. In order to control the size of the nanoclusters and the density of magnetic cores, several parameters were evaluated and tuned. Then, MNCs were functionalized with a polydopamine layer (MNC@PDO) to improve their stability in aqueous solution, to increase density of functional groups and to obtain a nanosystem suitable for drug-controlled release. Finally, cisplatin was grafted on the surface of MNC@PDO to exploit the system as a magnetic field-guided anticancer delivery system. The biocompatibility of MNC@PDO and the cytotoxic effects of MNC@PDO-cisplatin complex were determined against human cervical cancer (HeLa) and human breast adenocarcinoma (MCF-7) cells. In vitro studies demonstrated that the MNC@PDO-cisplatin complexes inhibited the cellular proliferation by a dose-dependent effect. Therefore, by applying an external magnetic field, the released drug exerted its effect on a specific target area. In summary, the MNC@PDO nanosystem has a great potential to be used in targeted nanomedicine for the delivery of other drugs or biofunctional molecules.
2019
Istituto di Nanotecnologia - NANOTEC - Sede Lecce
antitumor drug
cisplatin
clustering
controlled release
magnetic nanoparticles
magnetophoresis
File in questo prodotto:
File Dimensione Formato  
mandriota-et-al-2018-design-and-application-of-cisplatin-loaded-magnetic-nanoparticle-clusters-for-smart-chemotherapy.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 8.99 MB
Formato Adobe PDF
8.99 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/539049
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 47
social impact