Availability of affordable and widely applicable interatomic potentials is the key needed to unlock the riches of modern materials modeling. Artificial neural network-based approaches for generating potentials are promising; however, neural network training requires large amounts of data, sampled adequately from an often unknown potential energy surface. Here we propose a self-consistent approach that is based on crystal structure prediction formalism and is guided by unsupervised data analysis, to construct an accurate, inexpensive, and transferable artificial neural network potential. Using this approach, we construct an interatomic potential for carbon and demonstrate its ability to reproduce first principles results on elastic and vibrational properties for diamond, graphite, and graphene, as well as energy ordering and structural properties of a wide range of crystalline and amorphous phases.

A systematic approach to generating accurate neural network potentials: the case of carbon

Lot, Ruggero;Pellegrini, Franco;de Gironcoli, Stefano
2021

Abstract

Availability of affordable and widely applicable interatomic potentials is the key needed to unlock the riches of modern materials modeling. Artificial neural network-based approaches for generating potentials are promising; however, neural network training requires large amounts of data, sampled adequately from an often unknown potential energy surface. Here we propose a self-consistent approach that is based on crystal structure prediction formalism and is guided by unsupervised data analysis, to construct an accurate, inexpensive, and transferable artificial neural network potential. Using this approach, we construct an interatomic potential for carbon and demonstrate its ability to reproduce first principles results on elastic and vibrational properties for diamond, graphite, and graphene, as well as energy ordering and structural properties of a wide range of crystalline and amorphous phases.
2021
Istituto Officina dei Materiali - IOM -
REACTIVE FORCE-FIELD, ELASTIC-MODULI, DIAMOND, SIMULATIONS, PERFORMANCE, FILMS
File in questo prodotto:
File Dimensione Formato  
s41524-021-00508-6.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.05 MB
Formato Adobe PDF
2.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/539119
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 32
social impact