In this paper we deal with a doubly nonlinear Cahn–Hilliard system, where both an internal constraint on the time derivative of the concentration and a potential for the concentration are introduced. The definition of the chemical potential includes two regularizations: a viscous and a diffusive term. First of all, we prove existence and uniqueness of a bounded solution to the system using a nonstandard maximum-principle argument for time-discretizations of doubly nonlinear equations. Possibly including singular potentials, this novel result brings improvements over previous approaches to this problem. Secondly, under suitable assumptions on the data, we show the convergence of solutions to the respective limit problems once either of the two regularization parameters vanishes.
Bounded solutions and their asymptotics for a doubly nonlinear Cahn–Hilliard system
Bonetti, Elena;Colli, Pierluigi;
2020
Abstract
In this paper we deal with a doubly nonlinear Cahn–Hilliard system, where both an internal constraint on the time derivative of the concentration and a potential for the concentration are introduced. The definition of the chemical potential includes two regularizations: a viscous and a diffusive term. First of all, we prove existence and uniqueness of a bounded solution to the system using a nonstandard maximum-principle argument for time-discretizations of doubly nonlinear equations. Possibly including singular potentials, this novel result brings improvements over previous approaches to this problem. Secondly, under suitable assumptions on the data, we show the convergence of solutions to the respective limit problems once either of the two regularization parameters vanishes.File | Dimensione | Formato | |
---|---|---|---|
s00526-020-1715-9.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
458.82 kB
Formato
Adobe PDF
|
458.82 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.