A new nonlinear circuit with frequency locking capability in the case of a generic quasi-periodic input, is presented. Due to this capability the circuit is called a Quasi-Periodic Locked Loop (Q-PLL). The locked frequency is parametrically selected from among those prescribed by the theory of resonances in dynamical systems. In particular, the locked frequency forms a three-frequency resonance with the frequencies of the quasi-periodic input. The circuit is able to lock also in case of deterministic perturbation (additional frequency components) and stochastic perturbation (wide-band noise). The circuit is closely related to the pitch perception of complex sound in humans and, as such, can be considered a bio-inspired device. From the point of view of applications, it may be considered as an extension of the Phase Locked Loop (PLL) with the additional ability of locking simultaneously to more than one frequency. Due to the dynamical and structural robustness of the locked states, the Q-PLL represents a tangible advance for the development of specific applications, for example, in medicine (hearing aids, and cochlear implants), in robotics (artificial senses), and in industrial and consumer electronics (improvement of speech intelligibility, pitch-based processing, etc.).

A New Kind of Locked Circuit: The Quasi-Periodic Locked Loop (Q-PLL)

Gonzalez D. L.;Maurizi A.
2022

Abstract

A new nonlinear circuit with frequency locking capability in the case of a generic quasi-periodic input, is presented. Due to this capability the circuit is called a Quasi-Periodic Locked Loop (Q-PLL). The locked frequency is parametrically selected from among those prescribed by the theory of resonances in dynamical systems. In particular, the locked frequency forms a three-frequency resonance with the frequencies of the quasi-periodic input. The circuit is able to lock also in case of deterministic perturbation (additional frequency components) and stochastic perturbation (wide-band noise). The circuit is closely related to the pitch perception of complex sound in humans and, as such, can be considered a bio-inspired device. From the point of view of applications, it may be considered as an extension of the Phase Locked Loop (PLL) with the additional ability of locking simultaneously to more than one frequency. Due to the dynamical and structural robustness of the locked states, the Q-PLL represents a tangible advance for the development of specific applications, for example, in medicine (hearing aids, and cochlear implants), in robotics (artificial senses), and in industrial and consumer electronics (improvement of speech intelligibility, pitch-based processing, etc.).
2022
Istituto per la Microelettronica e Microsistemi - IMM
frequency locking
pitch perception
Quasi-periodic signals
File in questo prodotto:
File Dimensione Formato  
A_New_Kind_of_Locked_Circuit_The_Quasi-Periodic_Locked_Loop_Q-PLL.pdf

non disponibili

Descrizione: articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/539319
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact