The chemical and stable carbon isotopic composition of the organic aerosol particles (OA) emitted by a shuttle passenger ship between mainland Naples and island Capri in Italy were investigated. Various methylsiloxanes and derivatives were found in particulate ship emissions for the first time, as identified in the mass spectra of a thermal desorption – proton transfer reaction – mass spectrometer (TD-PTR-MS) based on the natural abundance of silicon isotopes. Large contributions of methylsiloxanes to OA (up to 59.3%) were found under inefficient combustion conditions, and considerably lower methylsiloxane emissions were observed under cruise conditions (1.2% of OA). Furthermore, the stable carbon isotopic composition can provide a fingerprint for methylsiloxanes, as they have low δ13C values in the range of −44.91‰ ± 4.29‰. The occurrence of methylsiloxanes was therefore further supported by low δ13C values of particulate organic carbon (OC), ranging from −34.7‰ to −39.4‰, when carbon fractions of methylsiloxanes in OC were high. The δ13C values of OC increased up to around −26.7‰ under cruise conditions, when carbon fractions of methylsiloxanes in OC were low. Overall, the δ13C value of OC decreased linearly with increasing carbon fraction of methylsiloxanes in OC, and the slope is consistent with a mixture of methylsiloxanes and fuel combustion products. The methylsiloxanes in ship emissions may come from engine lubricants.

A large contribution of methylsiloxanes to particulate matter from ship emissions

Sirignano C.;
2022

Abstract

The chemical and stable carbon isotopic composition of the organic aerosol particles (OA) emitted by a shuttle passenger ship between mainland Naples and island Capri in Italy were investigated. Various methylsiloxanes and derivatives were found in particulate ship emissions for the first time, as identified in the mass spectra of a thermal desorption – proton transfer reaction – mass spectrometer (TD-PTR-MS) based on the natural abundance of silicon isotopes. Large contributions of methylsiloxanes to OA (up to 59.3%) were found under inefficient combustion conditions, and considerably lower methylsiloxane emissions were observed under cruise conditions (1.2% of OA). Furthermore, the stable carbon isotopic composition can provide a fingerprint for methylsiloxanes, as they have low δ13C values in the range of −44.91‰ ± 4.29‰. The occurrence of methylsiloxanes was therefore further supported by low δ13C values of particulate organic carbon (OC), ranging from −34.7‰ to −39.4‰, when carbon fractions of methylsiloxanes in OC were high. The δ13C values of OC increased up to around −26.7‰ under cruise conditions, when carbon fractions of methylsiloxanes in OC were low. Overall, the δ13C value of OC decreased linearly with increasing carbon fraction of methylsiloxanes in OC, and the slope is consistent with a mixture of methylsiloxanes and fuel combustion products. The methylsiloxanes in ship emissions may come from engine lubricants.
2022
Istituto di Scienze dell'Atmosfera e del Clima - ISAC - Sede Secondaria Roma
13
C analysis
Lubricating oil
Mass spectrometry
Methylsiloxane
Organic aerosol
Ship emissions
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0160412022002513-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/539395
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact