Carbohydrate binding modules (CBMs) are protein domains that typically reside near catalytic domains, increasing substrate-protein proximity by constraining the conformational space of carbohydrates. Due to the flexibility and variability of glycans, the molecular details of how these protein regions recognize their target molecules are not always fully understood. Computational methods, including molecular docking and molecular dynamics simulations, have been employed to investigate lectin-carbohydrate interactions. In this study, we introduce a novel approach that integrates multiple computational techniques to identify the critical amino acids involved in the interaction between a CBM located at the tip of bacteriophage J-1’s tail and its carbohydrate counterparts. Our results highlight three amino acids that play a significant role in binding, a finding we confirmed through in vitro experiments. By presenting this approach, we offer an intriguing alternative for pinpointing amino acids that contribute to protein-sugar interactions, leading to a more thorough comprehension of the molecular determinants of protein-carbohydrate interactions.

Unveiling crucial amino acids in the carbohydrate recognition domain of a viral protein through a structural bioinformatic approach

Modenutti, Carlos P
2024

Abstract

Carbohydrate binding modules (CBMs) are protein domains that typically reside near catalytic domains, increasing substrate-protein proximity by constraining the conformational space of carbohydrates. Due to the flexibility and variability of glycans, the molecular details of how these protein regions recognize their target molecules are not always fully understood. Computational methods, including molecular docking and molecular dynamics simulations, have been employed to investigate lectin-carbohydrate interactions. In this study, we introduce a novel approach that integrates multiple computational techniques to identify the critical amino acids involved in the interaction between a CBM located at the tip of bacteriophage J-1’s tail and its carbohydrate counterparts. Our results highlight three amino acids that play a significant role in binding, a finding we confirmed through in vitro experiments. By presenting this approach, we offer an intriguing alternative for pinpointing amino acids that contribute to protein-sugar interactions, leading to a more thorough comprehension of the molecular determinants of protein-carbohydrate interactions.
2024
Istituto di biologia e biotecnologia agraria (IBBA)
carbohydrate selectivity
guided docking
molecular dynamics
water sites
File in questo prodotto:
File Dimensione Formato  
Gamarra_M-2024-bindingsite_detection_pipeline.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/539509
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact