Many biogenic volatile organic compounds (BVOC) are chiral, existing in two mirror image forms called enantiomers. The most abundant atmospheric chiral BVOC is α-pinene (C10H16), whose enantiomeric ratio has been reported to be regiospecific. Here we show with measurements made on a 325 m tower in the Amazon rainforest that the enantiomeric ratio varies unexpectedly (by a factor of ten) with (+)-α-pinene dominating at canopy level and (−)-α-pinene at tower top. The ratio is independent of wind direction, speed and sunlight but shows diurnal temperature dependent enrichment in the (−)-α-pinene enantiomer at the lowest 80 m height. These effects cannot be caused by atmospheric reaction with oxidants, or aerosol uptake. The reversal of chiral ratio at 80 m reveals the presence of a potent uncharacterized local (+)-α-pinene rich source, possibly linked to herbivory and termites. These results suggest the presence of a strong uncharacterized BVOC source that is overlooked in current emission models.
Surprising chiral composition changes over the Amazon rainforest with height, time and season
Zannoni, Nora
;
2020
Abstract
Many biogenic volatile organic compounds (BVOC) are chiral, existing in two mirror image forms called enantiomers. The most abundant atmospheric chiral BVOC is α-pinene (C10H16), whose enantiomeric ratio has been reported to be regiospecific. Here we show with measurements made on a 325 m tower in the Amazon rainforest that the enantiomeric ratio varies unexpectedly (by a factor of ten) with (+)-α-pinene dominating at canopy level and (−)-α-pinene at tower top. The ratio is independent of wind direction, speed and sunlight but shows diurnal temperature dependent enrichment in the (−)-α-pinene enantiomer at the lowest 80 m height. These effects cannot be caused by atmospheric reaction with oxidants, or aerosol uptake. The reversal of chiral ratio at 80 m reveals the presence of a potent uncharacterized local (+)-α-pinene rich source, possibly linked to herbivory and termites. These results suggest the presence of a strong uncharacterized BVOC source that is overlooked in current emission models.File | Dimensione | Formato | |
---|---|---|---|
s43247-020-0007-9 (2).pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.98 MB
Formato
Adobe PDF
|
1.98 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.