A capacitively coupled radio-frequency argon plasma, used for tungsten sputtering deposition, is characterized using Langmuir probe measurements. Druyvesteyn’s method is used to evaluate plasma parameters through the integral of the Electron Energy Distribution Function (EEDF). In the pressure range analyzed (0.6–10 Pa), the obtained distributions are not Maxwellian, which suggests some depletion of electrons with higher energies. The obtained plasma parameters are compared with those derived from the graphical method. The electron temperature obtained via the graphical method is always lower than the effective temperatures derived from EEDFs, and vice versa, the electron density is overestimated by the graphical method. Optical Emission Spectroscopy is used to monitor the atoms sputtered in the plasma process. The behavior of excited species correlates with the plasma parameters.

Characterization of Tungsten Sputtering Processes in a Capacitively Coupled Argon Plasma

Espedito Vassallo;Miriam Saleh
;
Matteo Pedroni;Anna Cremona;Dario Ripamonti
2025

Abstract

A capacitively coupled radio-frequency argon plasma, used for tungsten sputtering deposition, is characterized using Langmuir probe measurements. Druyvesteyn’s method is used to evaluate plasma parameters through the integral of the Electron Energy Distribution Function (EEDF). In the pressure range analyzed (0.6–10 Pa), the obtained distributions are not Maxwellian, which suggests some depletion of electrons with higher energies. The obtained plasma parameters are compared with those derived from the graphical method. The electron temperature obtained via the graphical method is always lower than the effective temperatures derived from EEDFs, and vice versa, the electron density is overestimated by the graphical method. Optical Emission Spectroscopy is used to monitor the atoms sputtered in the plasma process. The behavior of excited species correlates with the plasma parameters.
2025
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (ICMATE) - Sede Secondaria Milano
plasma sputtering, Langmuir probe, capacitively coupled argon plasma
File in questo prodotto:
File Dimensione Formato  
plasma-08-00008-v2(1).pdf

accesso aperto

Licenza: Creative commons
Dimensione 4.07 MB
Formato Adobe PDF
4.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/539678
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact