Self‐assembled monolayers (SAMs) of organic‐conjugated transition metal complexes on surfaces is a focus of both device engineering and basic science, since it is a key factor in nearly all important aspects of device performances, including operation voltages, degradation, and efficiency. The huge amount of literature results related to the first monolayer, and reorganization and self‐assembling processes are due to the general accepted result that structural and chemical properties of the first monolayer are the key parameters for controlled thin film growth. Optical and magneto‐electronic properties are intimately connected, and the accurate determination of electronic levels, excitation, and relaxation dynamics is mandatory for the optimization of electronic, photovoltaic, and opto‐electronic devices. Quite a number of electronic states is generated by the interaction of light with complex organic molecules. Time‐resolved spectroscopies are a new investigation tool that gives the possibility of correctly addressing their origin and life time. Examples of prototypical systems are presented and discussed. We review on complementary techniques, trying to single out how different approaches are fundamental to fully characterize these complex systems.

Introduction to Electronic Properties and Dynamics of Organic Complexes as Self-Assembled Monolayers

Maddalena Pedio
Writing – Original Draft Preparation
;
2017

Abstract

Self‐assembled monolayers (SAMs) of organic‐conjugated transition metal complexes on surfaces is a focus of both device engineering and basic science, since it is a key factor in nearly all important aspects of device performances, including operation voltages, degradation, and efficiency. The huge amount of literature results related to the first monolayer, and reorganization and self‐assembling processes are due to the general accepted result that structural and chemical properties of the first monolayer are the key parameters for controlled thin film growth. Optical and magneto‐electronic properties are intimately connected, and the accurate determination of electronic levels, excitation, and relaxation dynamics is mandatory for the optimization of electronic, photovoltaic, and opto‐electronic devices. Quite a number of electronic states is generated by the interaction of light with complex organic molecules. Time‐resolved spectroscopies are a new investigation tool that gives the possibility of correctly addressing their origin and life time. Examples of prototypical systems are presented and discussed. We review on complementary techniques, trying to single out how different approaches are fundamental to fully characterize these complex systems.
2017
Istituto Officina dei Materiali - IOM -
9789535131571
Time-resolved spectroscopy
Self-assembling
File in questo prodotto:
File Dimensione Formato  
Pedio_Ressel_TRPES2017.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.92 MB
Formato Adobe PDF
5.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/539689
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact