Biohybrid microbots integrate biological actuators and sensors into synthetic chassis with the aim of providing the building blocks of next-generation micro-robotics. One of the main challenges is the development of self-assembled systems with consistent behavior and such that they can be controlled independently to perform complex tasks. Herein, it is shown that, using light-driven bacteria as propellers, 3D printed microbots can be steered by unbalancing light intensity over different microbot parts. An optimal feedback loop is designed in which a central computer projects onto each microbot a tailor-made light pattern, calculated from its position and orientation. In this way, multiple microbots can be independently guided through a series of spatially distributed checkpoints. By exploiting a natural light-driven proton pump, these bio-hybrid microbots are able to extract mechanical energy from light with such high efficiency that, in principle, hundreds of these systems can be controlled simultaneously with a total optical power of just a few milliwatts.

Light Controlled Biohybrid Microbots

Pellicciotta N.;Frangipane G.;Leonardo R. D.
2023

Abstract

Biohybrid microbots integrate biological actuators and sensors into synthetic chassis with the aim of providing the building blocks of next-generation micro-robotics. One of the main challenges is the development of self-assembled systems with consistent behavior and such that they can be controlled independently to perform complex tasks. Herein, it is shown that, using light-driven bacteria as propellers, 3D printed microbots can be steered by unbalancing light intensity over different microbot parts. An optimal feedback loop is designed in which a central computer projects onto each microbot a tailor-made light pattern, calculated from its position and orientation. In this way, multiple microbots can be independently guided through a series of spatially distributed checkpoints. By exploiting a natural light-driven proton pump, these bio-hybrid microbots are able to extract mechanical energy from light with such high efficiency that, in principle, hundreds of these systems can be controlled simultaneously with a total optical power of just a few milliwatts.
2023
Istituto di Nanotecnologia - NANOTEC - Sede Secondaria Roma
active matters
biohybrid microrobots
microswimmers
File in questo prodotto:
File Dimensione Formato  
4-Adv Funct Materials - 2023 - Pellicciotta - Light Controlled Biohybrid Microbots.pdf

accesso aperto

Licenza: Creative commons
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/539832
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 30
social impact