All-solid-state batteries (ASSBs) with solid-state electrolytes (SSEs) have become a hot research topic in recent years due to their high energy density and safety. However, most research is limited to the use of electrode and electrolyte powders pressed together for testing purposes, and it is impossible to achieve the goal of mass production by manufacturing complete batteries only via compression. Such a method might need extremely high pressure to obtain a fully dense system composed of both electrodes separated by the electrolyte and the largest the battery surface the highest the pressure demanded. Therefore, how to achieve mass production of SSEs while maintaining quality control is the focus of current research. In this work, we selected Li3InCl6 (LIC) as a solid-state electrolyte added with a small amount of ethyl cellulose as the binder. A wet method was developed accordingly using acetonitrile as solvent to fabricate thin LIC composite film SSE (LIC-ACE) directly on filter membrane deposition. The prepared SSEs showed the following characteristics: easy to peel off from the deposition support while maintaining structural integrity, and a high ionic conductivity of 0.76 mS cm−1 at room temperature. The structure, porosity and other properties were determined by SEM, XRD, and BET characterization. Finally, it can withstand more than 1000 h cycles without short circuit in symmetrical Li–Li cell test and shows good electrochemical performance in the ASSBs test.

Thin-film Li3InCl6 electrolyte prepared by solution casting method for all-solid-state batteries

Piccardo P.
;
Carraro G.;Smerieri M.;Spotorno R.
Ultimo
2023

Abstract

All-solid-state batteries (ASSBs) with solid-state electrolytes (SSEs) have become a hot research topic in recent years due to their high energy density and safety. However, most research is limited to the use of electrode and electrolyte powders pressed together for testing purposes, and it is impossible to achieve the goal of mass production by manufacturing complete batteries only via compression. Such a method might need extremely high pressure to obtain a fully dense system composed of both electrodes separated by the electrolyte and the largest the battery surface the highest the pressure demanded. Therefore, how to achieve mass production of SSEs while maintaining quality control is the focus of current research. In this work, we selected Li3InCl6 (LIC) as a solid-state electrolyte added with a small amount of ethyl cellulose as the binder. A wet method was developed accordingly using acetonitrile as solvent to fabricate thin LIC composite film SSE (LIC-ACE) directly on filter membrane deposition. The prepared SSEs showed the following characteristics: easy to peel off from the deposition support while maintaining structural integrity, and a high ionic conductivity of 0.76 mS cm−1 at room temperature. The structure, porosity and other properties were determined by SEM, XRD, and BET characterization. Finally, it can withstand more than 1000 h cycles without short circuit in symmetrical Li–Li cell test and shows good electrochemical performance in the ASSBs test.
2023
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM - Sede Secondaria Genova
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (ICMATE) - Sede Secondaria Genova
Solution casting, Thin-film solid-state electrolyte, All-solid-state battery, Li3InCl6
File in questo prodotto:
File Dimensione Formato  
Thin-film Li3InCl6 electrolyte prepared by solution casting method for all-solid-state batteries.pdf

accesso aperto

Descrizione: Article
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.86 MB
Formato Adobe PDF
3.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/539898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact