Traditional consolidants commonly used for waterlogged wood conservation often present long-term drawbacks, prompting research into new and reliable alternatives. Reducing reliance on fossil-based chemicals that are harmful to people, the environment, and the climate is a growing trend, and sustainable materials are now being explored as alternative consolidants for conserving waterlogged archaeological wood. Among these bio-based products, sodium alginate, a natural polysaccharide, has shown promising potential. This study aimed to evaluate its effectiveness in stabilising dimensions of severely degraded archaeological elm wood during drying. Various treatments were tested, and dimensional stabilisation (ASE), weight percent gain (WPG), and volumetric shrinkage (Vs) were assessed. Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) were used to evaluate alginate penetration and interactions with residual wood components. Results indicated that the effectiveness of sodium alginate depends on the treatment method, with the soaking approach and slow drying providing the highest WPG and the best stabilisation without altering the natural wood colour. Although the best achieved anti-shrink efficiency of 40% is insufficient from the conservation perspective, sodium alginate has proven to be a promising consolidant for the conservation of waterlogged wood. Further studies will focus on enhancing its penetration and interactions with residual wood components.

Sodium Alginate as a Green Consolidant for Waterlogged Wood—A Preliminary Study

Villani, Elisa;Capuani, Silvia;
2025

Abstract

Traditional consolidants commonly used for waterlogged wood conservation often present long-term drawbacks, prompting research into new and reliable alternatives. Reducing reliance on fossil-based chemicals that are harmful to people, the environment, and the climate is a growing trend, and sustainable materials are now being explored as alternative consolidants for conserving waterlogged archaeological wood. Among these bio-based products, sodium alginate, a natural polysaccharide, has shown promising potential. This study aimed to evaluate its effectiveness in stabilising dimensions of severely degraded archaeological elm wood during drying. Various treatments were tested, and dimensional stabilisation (ASE), weight percent gain (WPG), and volumetric shrinkage (Vs) were assessed. Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) were used to evaluate alginate penetration and interactions with residual wood components. Results indicated that the effectiveness of sodium alginate depends on the treatment method, with the soaking approach and slow drying providing the highest WPG and the best stabilisation without altering the natural wood colour. Although the best achieved anti-shrink efficiency of 40% is insufficient from the conservation perspective, sodium alginate has proven to be a promising consolidant for the conservation of waterlogged wood. Further studies will focus on enhancing its penetration and interactions with residual wood components.
2025
Istituto dei Sistemi Complessi - ISC
alginate
archaeological wood
cultural heritage
dimensional stabilisation
wood conservation
wood consolidation
File in questo prodotto:
File Dimensione Formato  
forests-16-00325-v2.pdf

accesso aperto

Descrizione: Sodium Alginate as a Green Consolidant for Waterlogged Wood—A Preliminary Study
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 9.8 MB
Formato Adobe PDF
9.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/540485
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact