This study aims to assess the stability of silica gel/polymer composites designed for open-cycle air dehumidification, humidification, and heat storage by employing a comprehensive set of characterization methods. To evaluate their resistance to various environmental factors, the materials were subjected to a series of aging treatments: (i) repeated adsorption/desorption cycles under representative operational conditions; (ii) post-drying at 30 °C, 40 °C, and 60 °C; (iii) immersion in water for 30 days; (iv) exposure to a salt–fog environment for 30 days; and (v) accelerated aging by alternation between wet and dry cycles. Prolonged exposure to liquid water significantly reduced the material’s stability, resulting in an 83% reduction in tensile strength after 30 days of immersion. However, discontinuous exposure to liquid water at low drying temperatures did not critically affect the material’s mechanical properties during wet/dry cycles. Furthermore, post-drying (performed at 22 °C and 50% RH) allows the recovery of mechanical performance, with a tensile strength reached comparable to those of the unaged composites. Similarly, adsorption/desorption cycles in water vapor did not trigger degradation in the material, with its water vapor adsorption capacity remaining comparable to the unaged material after 100 cycles. The results confirm the reliability of these composite materials as to their potential uses in open-cycle dehumidification, humidification, and heat-storage applications.

Stability of Adsorbent Sheets Under Accelerated-Aging Tests for Open-Cycle Adsorption Processes

Freni, Angelo;Calabrese, Luigi
2025

Abstract

This study aims to assess the stability of silica gel/polymer composites designed for open-cycle air dehumidification, humidification, and heat storage by employing a comprehensive set of characterization methods. To evaluate their resistance to various environmental factors, the materials were subjected to a series of aging treatments: (i) repeated adsorption/desorption cycles under representative operational conditions; (ii) post-drying at 30 °C, 40 °C, and 60 °C; (iii) immersion in water for 30 days; (iv) exposure to a salt–fog environment for 30 days; and (v) accelerated aging by alternation between wet and dry cycles. Prolonged exposure to liquid water significantly reduced the material’s stability, resulting in an 83% reduction in tensile strength after 30 days of immersion. However, discontinuous exposure to liquid water at low drying temperatures did not critically affect the material’s mechanical properties during wet/dry cycles. Furthermore, post-drying (performed at 22 °C and 50% RH) allows the recovery of mechanical performance, with a tensile strength reached comparable to those of the unaged composites. Similarly, adsorption/desorption cycles in water vapor did not trigger degradation in the material, with its water vapor adsorption capacity remaining comparable to the unaged material after 100 cycles. The results confirm the reliability of these composite materials as to their potential uses in open-cycle dehumidification, humidification, and heat-storage applications.
2025
Istituto di Chimica dei Composti Organo Metallici - ICCOM - Sede Secondaria Pisa
adsorbent sheets
aging
mechanical test
open-cycle adsorption process
stability verification
File in questo prodotto:
File Dimensione Formato  
Energies 2025, 18, 1023.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.7 MB
Formato Adobe PDF
2.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/540804
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact