Purpose: A computational method based on Monte-Carlo calculations is presented and used to calculate isodose curves for a new upright and tilting CT scanner useful for radiation protection purposes. Methods: The TOPAS code platform with imported CAD files for key components was used to construct a calculation space for the scanner. A sphere of water acts as the patient would by creating scatter out of the bore. Maximum intensity dose maps are calculated for various possible tilt angles to make sure radiation protection for site planning uses the maximum possible dose everywhere. Results: The resulting maximum intensity isodose lines are more rounded than ones for just a single tilt angle and so closer to isotropic. These maximum intensity curves are closer to the isotropic assumption used in CTDI or DLP based methods of site planning and radiation protection. The isodose lines are similar to those of a standard CT scanner, just tilted upwards. There is more metal above the beam that lessens the dose above versus below isocenter. Conclusion: Aside from the orientation, this upright scanner is very similar to a typical CT scanner, and nothing different for shielding needs to be done for this new upright tilting CT scanner, because an isotropic scatter source is often assumed for any CT scanner.

Calculation method for novel upright CT scanner isodose curves

Panaino, Costanza;
2024

Abstract

Purpose: A computational method based on Monte-Carlo calculations is presented and used to calculate isodose curves for a new upright and tilting CT scanner useful for radiation protection purposes. Methods: The TOPAS code platform with imported CAD files for key components was used to construct a calculation space for the scanner. A sphere of water acts as the patient would by creating scatter out of the bore. Maximum intensity dose maps are calculated for various possible tilt angles to make sure radiation protection for site planning uses the maximum possible dose everywhere. Results: The resulting maximum intensity isodose lines are more rounded than ones for just a single tilt angle and so closer to isotropic. These maximum intensity curves are closer to the isotropic assumption used in CTDI or DLP based methods of site planning and radiation protection. The isodose lines are similar to those of a standard CT scanner, just tilted upwards. There is more metal above the beam that lessens the dose above versus below isocenter. Conclusion: Aside from the orientation, this upright scanner is very similar to a typical CT scanner, and nothing different for shielding needs to be done for this new upright tilting CT scanner, because an isotropic scatter source is often assumed for any CT scanner.
2024
Istituto Nazionale di Ottica - INO
CT isodose
CT upright tilting gantry
TOPAS Monte‐Carlo modeling
File in questo prodotto:
File Dimensione Formato  
J Applied Clin Med Phys - 2024 - Kissick - Calculation method for novel upright CT scanner isodose curves.pdf

accesso aperto

Descrizione: Version of Record
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.86 MB
Formato Adobe PDF
3.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/540891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact