We numerically study the dynamical properties of fully frustrated models in two and three dimensions. The results obtained support the hypothesis that the percolation transition of the Kasteleyn-Fortuin clusters corresponds to the onset of stretched exponential autocorrelation functions in systems without disorder. This dynamical behavior may be due to the "large scale" effects of frustration, present below the percolation threshold. Moreover, these results are consistent with the picture suggested by Campbell et al. [J. Phys. C 20, L47 (1987)] in the space of configurations.
Percolation transition and the onset of nonexponential relaxation in fully frustrated models
Annalisa Fierro;Antonio de Candia;Antonio Coniglio
1999
Abstract
We numerically study the dynamical properties of fully frustrated models in two and three dimensions. The results obtained support the hypothesis that the percolation transition of the Kasteleyn-Fortuin clusters corresponds to the onset of stretched exponential autocorrelation functions in systems without disorder. This dynamical behavior may be due to the "large scale" effects of frustration, present below the percolation threshold. Moreover, these results are consistent with the picture suggested by Campbell et al. [J. Phys. C 20, L47 (1987)] in the space of configurations.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


