ceutical recovery, as they are rich in bioactive compounds, particularly polyphenols. This study introduces a novel and eco-friendly method for extracting and purifying polyphenols from white grape wine lees. Solid-liquid extraction was conducted using water and a 25 % w/w ethanol-water hydroalcoholic solution, resulting in aqueous (Aq) and hydroalcoholic (HA) extracts. Five food-grade, non-ionic polymeric resins (XAD7HP, XAD16HP, MN202, PAD900, and PAD950) were evaluated for polyphenol purification. Resin MN202 emerged as the most effective for this purpose. Under static conditions with the Aqueous extract, the MN202 resin achieved an adsorption ratio (AR) of up to 60.5 % and a desorption ratio of 97.9 %, yielding a total adsorption-desorption efficiency (TADY) of 59.2 %. In contrast, the TADY for glucose and fructose was minimal at just 0.36 % and 11.25 %, respectively, highlighting the resin’s high selectivity for separating polyphenols from sugars. Adsorption isotherms (Langmuir, Freundlich, Sips, and Redlich-Peterson) followed the Langmuir isotherm model, indicating monolayer adsorption. Both adsorption and desorption conformed to pseudo-second-order kinetics, dominated by multilayer intraparticle diffusion. Under dynamic conditions, polyphenol recovery decreased to 44 %, though the purified polyphenols remained suitable for high-value applications. Overall, this process potentially provides a promising and sustainable approach for recovering polyphenols from wine lees, with strong potential for scaling and use in nutraceutical and antioxidant products.
Assessment of the polyphenol recovery from white wine lees via non-ionic polymeric resins
Carmela Conidi;Alfredo Cassano
;
2025
Abstract
ceutical recovery, as they are rich in bioactive compounds, particularly polyphenols. This study introduces a novel and eco-friendly method for extracting and purifying polyphenols from white grape wine lees. Solid-liquid extraction was conducted using water and a 25 % w/w ethanol-water hydroalcoholic solution, resulting in aqueous (Aq) and hydroalcoholic (HA) extracts. Five food-grade, non-ionic polymeric resins (XAD7HP, XAD16HP, MN202, PAD900, and PAD950) were evaluated for polyphenol purification. Resin MN202 emerged as the most effective for this purpose. Under static conditions with the Aqueous extract, the MN202 resin achieved an adsorption ratio (AR) of up to 60.5 % and a desorption ratio of 97.9 %, yielding a total adsorption-desorption efficiency (TADY) of 59.2 %. In contrast, the TADY for glucose and fructose was minimal at just 0.36 % and 11.25 %, respectively, highlighting the resin’s high selectivity for separating polyphenols from sugars. Adsorption isotherms (Langmuir, Freundlich, Sips, and Redlich-Peterson) followed the Langmuir isotherm model, indicating monolayer adsorption. Both adsorption and desorption conformed to pseudo-second-order kinetics, dominated by multilayer intraparticle diffusion. Under dynamic conditions, polyphenol recovery decreased to 44 %, though the purified polyphenols remained suitable for high-value applications. Overall, this process potentially provides a promising and sustainable approach for recovering polyphenols from wine lees, with strong potential for scaling and use in nutraceutical and antioxidant products.File | Dimensione | Formato | |
---|---|---|---|
Journal of Food Engineering 13.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
5.37 MB
Formato
Adobe PDF
|
5.37 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.