Autism Spectrum Disorder (ASD) is a highly prevalent neurodevelopmental condition characterized by social communication deficits and repetitive/restricted behaviors. Several studies showed that oxidative stress and inflammation may contribute to ASD. Indeed, increased levels of oxygen radicals and pro-inflammatory molecules were described in the brain and peripheral blood of persons with ASD and mouse models. Despite this, a potential direct connection between oxidative stress and inflammation within specific brain areas and ASD-related behaviors has not been investigated in detail yet. Here, we used RT-qPCR, RNA sequencing, metabolomics, immunohistochemistry, and flow cytometry to show that pro-inflammatory molecules were increased in the cerebellum and periphery of mice lacking Cntnap2, a robust model of ASD. In parallel, oxidative stress was present in the cerebellum of mutant animals. Systemic treatment with N-acetyl-cysteine (NAC) rescued cerebellar oxidative stress, inflammation, as well as motor and social impairments in Cntnap2-/- mice, concomitant with enhanced function of microglia cells in NAC-treated mutants. Intriguingly, social deficits, cerebellar inflammation, and microglia dysfunction were induced by NAC in Cntnap2+/+ animals. Our findings suggest that the interplay between oxidative stress and inflammation accompanied by genetic vulnerability may underlie ASD-related behaviors in Cntnap2 mutant mice.

The interplay between oxidative stress and inflammation supports autistic-related behaviors in Cntnap2 knockout mice

Chelini, Gabriele;Pastore, Anna;Bozzi, Yuri
2025

Abstract

Autism Spectrum Disorder (ASD) is a highly prevalent neurodevelopmental condition characterized by social communication deficits and repetitive/restricted behaviors. Several studies showed that oxidative stress and inflammation may contribute to ASD. Indeed, increased levels of oxygen radicals and pro-inflammatory molecules were described in the brain and peripheral blood of persons with ASD and mouse models. Despite this, a potential direct connection between oxidative stress and inflammation within specific brain areas and ASD-related behaviors has not been investigated in detail yet. Here, we used RT-qPCR, RNA sequencing, metabolomics, immunohistochemistry, and flow cytometry to show that pro-inflammatory molecules were increased in the cerebellum and periphery of mice lacking Cntnap2, a robust model of ASD. In parallel, oxidative stress was present in the cerebellum of mutant animals. Systemic treatment with N-acetyl-cysteine (NAC) rescued cerebellar oxidative stress, inflammation, as well as motor and social impairments in Cntnap2-/- mice, concomitant with enhanced function of microglia cells in NAC-treated mutants. Intriguingly, social deficits, cerebellar inflammation, and microglia dysfunction were induced by NAC in Cntnap2+/+ animals. Our findings suggest that the interplay between oxidative stress and inflammation accompanied by genetic vulnerability may underlie ASD-related behaviors in Cntnap2 mutant mice.
2025
Istituto di Neuroscienze - IN -
ASD
Autism
Inflammation
Microglia
ROS
File in questo prodotto:
File Dimensione Formato  
Cntnap2 NAC.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.73 MB
Formato Adobe PDF
3.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/541544
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact