Modern IoT ecosystems face many security issues. An aspect often neglected concerns covert channels, which allow for exfiltrating data or preventing detection. To this aim, the Message Queuing Telemetry Transport (MQTT) protocol can be abused to create various hidden communication paths, mainly due to its textual nature. Alas, simpler detection metrics could be ineffective and their optimization requires a vast number of test cases. Therefore, this paper proposes to use a small language model trained over real MQTT topics to automatically generate the required test cases. Results indicate the need for optimizations to make popular detection metrics usable 'in the wild'.

Mitigation of Covert Communications in MQTT Topics Through Small Language Models

Zuppelli, M.;Caviglione, L.;Guarascio, M.
2024

Abstract

Modern IoT ecosystems face many security issues. An aspect often neglected concerns covert channels, which allow for exfiltrating data or preventing detection. To this aim, the Message Queuing Telemetry Transport (MQTT) protocol can be abused to create various hidden communication paths, mainly due to its textual nature. Alas, simpler detection metrics could be ineffective and their optimization requires a vast number of test cases. Therefore, this paper proposes to use a small language model trained over real MQTT topics to automatically generate the required test cases. Results indicate the need for optimizations to make popular detection metrics usable 'in the wild'.
2024
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI - Sede Secondaria Genova
9798331531300
Artificial Intelligence
Covert Channels
Cybersecurity
IoT
MQTT
Small Language Models
File in questo prodotto:
File Dimensione Formato  
2024_MASCOTS.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 473.96 kB
Formato Adobe PDF
473.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/541721
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact