Urban research faces challenges in understanding and describing city regions, which are essential for urban planning and tourism management. Traditional methods rely on predefined areas and non-human-readable representations. This paper presents a new unsupervised approach that overcomes these limitations using a data-driven method with Instruction-tuned Large Language Models (ILLMs). Our technique dynamically identifies urban regions with similar features and generates human-readable descriptions. We validate this method using Flickr images from Pisa, Italy, and our results show that it effectively captures the semantic features of urban regions and generates comprehensible textual descriptions.

From geolocated images to urban region identification and description: a large language model approach

Rocchietti G.
;
Pugliese C.;
2024

Abstract

Urban research faces challenges in understanding and describing city regions, which are essential for urban planning and tourism management. Traditional methods rely on predefined areas and non-human-readable representations. This paper presents a new unsupervised approach that overcomes these limitations using a data-driven method with Instruction-tuned Large Language Models (ILLMs). Our technique dynamically identifies urban regions with similar features and generates human-readable descriptions. We validate this method using Flickr images from Pisa, Italy, and our results show that it effectively captures the semantic features of urban regions and generates comprehensible textual descriptions.
2024
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
979-8-4007-1107-7
Image Captioning
Large Language Models
Summarization
Urban Regions
File in questo prodotto:
File Dimensione Formato  
Rocchietti-Pugliese et al_ACM SIGSPATIAL 2024.pdf

accesso aperto

Descrizione: From Geolocated Images to Urban Region Identification and Description: a Large Language Model Approach
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/543147
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact