This paper presents an economic assessment of seawater thermal energy storage (TES) integrated with industrial heat pumps to couple renewable electricity generation with urban district heating networks. Using Amsterdam as a case study, we develop a techno-economic model leveraging real-world data on electricity prices, heat demand, and system costs. Our findings show that large-scale TES using seawater as a storage medium significantly enhances district heating economics through energy arbitrage and operational flexibility. The optimal configuration yields a net present value (NPV) of EUR 466 million over 30 years and a payback period under 6 years. Thermal storage increases NPV by 17% compared to systems without storage, while within-day load shifting further boosts economic value by 23%. Accurate demand and price forecasting is critical, as forecasting errors can reduce NPV by 13.7%. The proposed system is scalable and well suited for coastal cities, offering a sustainable, space-efficient solution for urban decarbonization and addressing renewable energy overproduction.

Leveraging Seawater Thermal Energy Storage and Heat Pumps for Coupling Electricity and Urban Heating: A Techno-Economic Analysis

Santi, Paolo;
2025

Abstract

This paper presents an economic assessment of seawater thermal energy storage (TES) integrated with industrial heat pumps to couple renewable electricity generation with urban district heating networks. Using Amsterdam as a case study, we develop a techno-economic model leveraging real-world data on electricity prices, heat demand, and system costs. Our findings show that large-scale TES using seawater as a storage medium significantly enhances district heating economics through energy arbitrage and operational flexibility. The optimal configuration yields a net present value (NPV) of EUR 466 million over 30 years and a payback period under 6 years. Thermal storage increases NPV by 17% compared to systems without storage, while within-day load shifting further boosts economic value by 23%. Accurate demand and price forecasting is critical, as forecasting errors can reduce NPV by 13.7%. The proposed system is scalable and well suited for coastal cities, offering a sustainable, space-efficient solution for urban decarbonization and addressing renewable energy overproduction.
2025
Istituto di informatica e telematica - IIT
thermal storage, district heating, power markets, arbitrage, modeling, optimization
File in questo prodotto:
File Dimensione Formato  
energies-18-01869-v2.pdf

accesso aperto

Licenza: Creative commons
Dimensione 5.1 MB
Formato Adobe PDF
5.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/543441
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact