Antibiotic resistance poses a significant threat to human health, and waste- water treatment plants (WWTPs) are important reservoirs of antibiotic resis- tance genes (ARGs). Here, we analyze the antibiotic resistomes of 226 activated sludge samples from 142 WWTPs across six continents, using a consistent pipeline for sample collection, DNA sequencing and analysis. We find that ARGs are diverse and similarly abundant, with a core set of 20 ARGs present in all WWTPs. ARG composition differs across continents and is distinct from that of the human gut and the oceans. ARG composition strongly correlates with bacterial taxonomic composition, with Chloroflexi, Acidobacteria and Delta- proteobacteria being the major carriers. ARG abundance positively correlates with the presence of mobile genetic elements, and 57% of the 1112 recovered high-quality genomes possess putatively mobile ARGs. Resistome variations appear to be driven by a complex combination of stochastic processes and deterministic abiotic factors.

Global diversity and distribution of antibiotic resistance genes in human wastewater treatment systems.

Rossetti S;
2025

Abstract

Antibiotic resistance poses a significant threat to human health, and waste- water treatment plants (WWTPs) are important reservoirs of antibiotic resis- tance genes (ARGs). Here, we analyze the antibiotic resistomes of 226 activated sludge samples from 142 WWTPs across six continents, using a consistent pipeline for sample collection, DNA sequencing and analysis. We find that ARGs are diverse and similarly abundant, with a core set of 20 ARGs present in all WWTPs. ARG composition differs across continents and is distinct from that of the human gut and the oceans. ARG composition strongly correlates with bacterial taxonomic composition, with Chloroflexi, Acidobacteria and Delta- proteobacteria being the major carriers. ARG abundance positively correlates with the presence of mobile genetic elements, and 57% of the 1112 recovered high-quality genomes possess putatively mobile ARGs. Resistome variations appear to be driven by a complex combination of stochastic processes and deterministic abiotic factors.
2025
Istituto di Ricerca Sulle Acque - IRSA
Antibiotic resistance; wastewater treatment plants; activated sludge; global survey; antibiotic resistomes
File in questo prodotto:
File Dimensione Formato  
Zhu_et_al-2025-Nature_Communications.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 13.31 MB
Formato Adobe PDF
13.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/543564
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact