The exploitation of bifacial solar cells in photovoltaics aims to provide cost-effective solutions to maximize solar power collection on specific surfaces. A prerequisite for this is the effective collection of backscattered diffuse light from albedo, to which self-shading is an obstacle. We discuss the benefits of bifaciality for an asymmetric low-concentrating and spectral-splitting photovoltaic optics system that features a wedged right-prism geometry to address self-shading. The performance of the conceptual design is analyzed, using commercial ray-tracing software, for four different latitudes of installation, by assuming a standard solar AM1.5G spectrum as input. The daily Relative Optical Power Increase (ROPI) is evaluated with respect to standard flat bifacial configurations, reaching ROPI = 293% at a latitude of 25° north at winter solstice. The photocurrent and total Power Conversion Efficiency (PCE) in a four-terminal (4T) configuration are estimated, assuming the operation of a commercial Si HJT bifacial cell and a commercial single-junction GaAs cell. A global increase in PCE of up to 23% is obtained with respect to the best-performing trackless standard bifacial configuration. From this perspective, the use of high-performance, high-bandgap solar cells in 4T configurations might further leverage the advantages of the optics proposed here.

Asymmetric Four-Terminal Solar Concentrator Improving Power Collection in Bifacial Solar Cells

Floriana Morabito
Primo
Conceptualization
;
Daniela Fontani
Secondo
Software
;
Paola Sansoni
Software
;
Salvatore Lombardo;Andrea Farina
Methodology
;
Silvia Maria Pietralunga
Ultimo
Funding Acquisition
2025

Abstract

The exploitation of bifacial solar cells in photovoltaics aims to provide cost-effective solutions to maximize solar power collection on specific surfaces. A prerequisite for this is the effective collection of backscattered diffuse light from albedo, to which self-shading is an obstacle. We discuss the benefits of bifaciality for an asymmetric low-concentrating and spectral-splitting photovoltaic optics system that features a wedged right-prism geometry to address self-shading. The performance of the conceptual design is analyzed, using commercial ray-tracing software, for four different latitudes of installation, by assuming a standard solar AM1.5G spectrum as input. The daily Relative Optical Power Increase (ROPI) is evaluated with respect to standard flat bifacial configurations, reaching ROPI = 293% at a latitude of 25° north at winter solstice. The photocurrent and total Power Conversion Efficiency (PCE) in a four-terminal (4T) configuration are estimated, assuming the operation of a commercial Si HJT bifacial cell and a commercial single-junction GaAs cell. A global increase in PCE of up to 23% is obtained with respect to the best-performing trackless standard bifacial configuration. From this perspective, the use of high-performance, high-bandgap solar cells in 4T configurations might further leverage the advantages of the optics proposed here.
2025
Istituto di fotonica e nanotecnologie - IFN - Sede Milano
Istituto Nazionale di Ottica - INO
Istituto per la Microelettronica e Microsistemi - IMM - Sede Secondaria UniCatania
bifacial photovoltaics, optical simulation, spectral splitting, four terminal,Power Conversion Efficiency,integrated photovoltaics IPV
File in questo prodotto:
File Dimensione Formato  
2025_energies-18-02044.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.43 MB
Formato Adobe PDF
6.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/543664
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact