Anion exchange membrane fuel cells (AEMFCs) are versatile power generation devices that can be fed by both gaseous (H2) and liquid fuels. The development of sustainable, efficient, and stable catalysts for the oxidation of hydrogen (HOR) and oxygen reduction (ORR) under alkaline conditions remains a challenge currently facing AEMFC technology. Reducing the loading of PGMs is essential for reducing the overall cost of AEMFCs. One strategy involves exploiting the synergistic effects of two metals in bimetallic nanoparticles (NPs). Here, we report that the activity for the HOR and the ORR can be finely tuned through surface engineering of carbon-supported PdAu-PVA NPs. The activity for both ORR and HOR can be adjusted by subjecting the material to heat treatment. Specifically, heat treatment at 500 °C under an inert atmosphere increases the crystallinity and oxophilicity of the nanoparticles, thereby enhancing anodic HOR performance. On the contrary, heat treatment significantly lowers ORR activity, highlighting how reduced surface oxophilicity plays a major role in increasing active sites for ORR. The tailored activity in these catalysts translates into high power densities when employed in AEMFCs (up to 1.1 W cm−2).
Tuning the Surface Oxophilicity of PdAu Alloy Nanoparticles to Favor Electrochemical Reactions: Hydrogen Oxidation and Oxygen Reduction in Anion Exchange Membrane Fuel Cells
Pagliaro, Maria V.;Poggini, Lorenzo;Bellini, Marco;Peruzzolo, Tailor;Miller, Hamish A.
2025
Abstract
Anion exchange membrane fuel cells (AEMFCs) are versatile power generation devices that can be fed by both gaseous (H2) and liquid fuels. The development of sustainable, efficient, and stable catalysts for the oxidation of hydrogen (HOR) and oxygen reduction (ORR) under alkaline conditions remains a challenge currently facing AEMFC technology. Reducing the loading of PGMs is essential for reducing the overall cost of AEMFCs. One strategy involves exploiting the synergistic effects of two metals in bimetallic nanoparticles (NPs). Here, we report that the activity for the HOR and the ORR can be finely tuned through surface engineering of carbon-supported PdAu-PVA NPs. The activity for both ORR and HOR can be adjusted by subjecting the material to heat treatment. Specifically, heat treatment at 500 °C under an inert atmosphere increases the crystallinity and oxophilicity of the nanoparticles, thereby enhancing anodic HOR performance. On the contrary, heat treatment significantly lowers ORR activity, highlighting how reduced surface oxophilicity plays a major role in increasing active sites for ORR. The tailored activity in these catalysts translates into high power densities when employed in AEMFCs (up to 1.1 W cm−2).| File | Dimensione | Formato | |
|---|---|---|---|
|
Catalysts 2025, 15(4), 306.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
8.64 MB
Formato
Adobe PDF
|
8.64 MB | Adobe PDF | Visualizza/Apri |
|
catalysts-3525866-supplementary.pdf
accesso aperto
Descrizione: supporting information
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
382.1 kB
Formato
Adobe PDF
|
382.1 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


