Purpose of Review: The elemental composition of organisms (the elementome) strongly determines their functional traits and their functioning. Global change presents significant potential impacts on forest elementomes of trees, soils, and soil microbes, influencing primary production, nutrient cycling, and food-web dynamics in forest ecosystems. This review aims to summarize recent advancements in understanding the response of forest elementomes to global change and how we can help them adapt to new conditions through improved management practices. Recent Findings: Atmospheric CO2 enrichment, increased nitrogen (N) deposition, climate warming and droughts strongly influence the elemental composition of trees, microbes and soils of forest ecosystems. Accounting for the composition and availability of essential elements such as N, phosphorus (P) and potassium (K) in the plant-soil system can largely improve projections of forest carbon(C) cycle, especially when simulating the capacity of globally increasing C fixation by the rising atmospheric CO2 concentration and N deposition. Summary: Global change influences forest elementomes across various scales, with diverse spatiotemporal variation and underlying mechanisms. Future research should integrate multi-source information to enhance the monitoring of elementomes and facilitate the adaptation of forests to the new environmental conditions through forest management, particularly focusing on the interaction effects of the multiple facets of global change.

Global Change Impacts on Forest Elementomes and Insights for Improved Management Practices

Collalti, Alessio;
2025

Abstract

Purpose of Review: The elemental composition of organisms (the elementome) strongly determines their functional traits and their functioning. Global change presents significant potential impacts on forest elementomes of trees, soils, and soil microbes, influencing primary production, nutrient cycling, and food-web dynamics in forest ecosystems. This review aims to summarize recent advancements in understanding the response of forest elementomes to global change and how we can help them adapt to new conditions through improved management practices. Recent Findings: Atmospheric CO2 enrichment, increased nitrogen (N) deposition, climate warming and droughts strongly influence the elemental composition of trees, microbes and soils of forest ecosystems. Accounting for the composition and availability of essential elements such as N, phosphorus (P) and potassium (K) in the plant-soil system can largely improve projections of forest carbon(C) cycle, especially when simulating the capacity of globally increasing C fixation by the rising atmospheric CO2 concentration and N deposition. Summary: Global change influences forest elementomes across various scales, with diverse spatiotemporal variation and underlying mechanisms. Future research should integrate multi-source information to enhance the monitoring of elementomes and facilitate the adaptation of forests to the new environmental conditions through forest management, particularly focusing on the interaction effects of the multiple facets of global change.
2025
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo - ISAFOM
Biogeochemistry
Climate change
Droughts
eCO
2
Forest management
Nitrogen deposition
Warming
File in questo prodotto:
File Dimensione Formato  
Hu_etal_2025_Curr_Clim_Chan_Repo.pdf

solo utenti autorizzati

Descrizione: Global Change Impacts on Forest Elementomes and Insights for Improved Management Practices
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/544201
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact