Turbulence, a fascinating and intricate phenomenon, has captivated scientists over different domains, mainly for its complex cross-scale nature spanning a wide range of temporal and spatial scales. Despite significant advances in theories and observations in the last decades, some aspects of turbulence still remain unsolved, motivating new efforts to understand its underlying physical mechanisms and refine mathematical theories along with numerical models. This topical review explores recent findings from the Parker Solar Probe mission, providing a distinctive opportunity to characterize solar wind features at varying heliocentric distances. Analyzing the radial evolution of magnetic and velocity field fluctuations across the inertial range, a transition has been evidenced from local to global self-similarity as proximity to the Sun increases. This behavior has been reconciled with magnetohydrodynamic theory revising an old concept by emphasizing the evolving nature of the coupling between fields. This offers inspiration for novel modeling approaches to understand open challenges in interplanetary plasma physics as the heating and acceleration of the solar wind, as well as, its evolution within the inner Heliosphere.

Cross-scale turbulence in space plasmas: old concepts, recent findings, and future challenges

Sorriso Valvo L.;
2025

Abstract

Turbulence, a fascinating and intricate phenomenon, has captivated scientists over different domains, mainly for its complex cross-scale nature spanning a wide range of temporal and spatial scales. Despite significant advances in theories and observations in the last decades, some aspects of turbulence still remain unsolved, motivating new efforts to understand its underlying physical mechanisms and refine mathematical theories along with numerical models. This topical review explores recent findings from the Parker Solar Probe mission, providing a distinctive opportunity to characterize solar wind features at varying heliocentric distances. Analyzing the radial evolution of magnetic and velocity field fluctuations across the inertial range, a transition has been evidenced from local to global self-similarity as proximity to the Sun increases. This behavior has been reconciled with magnetohydrodynamic theory revising an old concept by emphasizing the evolving nature of the coupling between fields. This offers inspiration for novel modeling approaches to understand open challenges in interplanetary plasma physics as the heating and acceleration of the solar wind, as well as, its evolution within the inner Heliosphere.
2025
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP - Sede Secondaria Bari
magnetohydrodynamics (MHD)
Parker Solar Probe
solar wind
space plasma
turbulence
File in questo prodotto:
File Dimensione Formato  
2025-PPCF-ALBERTI-REVIEW-TURBULENCE.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/544531
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact