The interaction of the Almone River with groundwater in the Caffarella area (Rome, Italy) was investigated using a multi-method approach based on hydrogeological and radon analyses. Eleven measurement stations were established along the river at distances of approximately 270 m from one another. Stream discharge, water physicochemical properties, and radon levels were measured from June 2024 to March 2025. The contribution of two tributaries of the Almone was evaluated, but it was found to be negligible in terms of radon contribution. Except for an average increase of 40 L/s between stations 1A and 2A, the Almone’s discharge (corrected for the streams input) was constant (around 150 L/s) in June and slightly increasing from 6A to 11A in March due to heavier rainfalls. The increased discharge between stations 1A and 2A was interpreted as groundwater overflow from the volcanic aquifer into the alluvial body and in turn into the river due to a change in geometry and volume of the volcanic aquifer. In that part of the river, radon concentration increased only in March, due to the fast transition of the groundwater from a high to a lower radon emanation unit. Radon decreased along the valley due to atmospheric evasion, as confirmed by pH growth due to CO2 degassing.

Groundwater–River Water Interaction in an Urban Setting (Rome, Italy) Using a Multi-Method Approach (Hydrogeological and Radon Analyses)

Di Salvo, Cristina;
2025

Abstract

The interaction of the Almone River with groundwater in the Caffarella area (Rome, Italy) was investigated using a multi-method approach based on hydrogeological and radon analyses. Eleven measurement stations were established along the river at distances of approximately 270 m from one another. Stream discharge, water physicochemical properties, and radon levels were measured from June 2024 to March 2025. The contribution of two tributaries of the Almone was evaluated, but it was found to be negligible in terms of radon contribution. Except for an average increase of 40 L/s between stations 1A and 2A, the Almone’s discharge (corrected for the streams input) was constant (around 150 L/s) in June and slightly increasing from 6A to 11A in March due to heavier rainfalls. The increased discharge between stations 1A and 2A was interpreted as groundwater overflow from the volcanic aquifer into the alluvial body and in turn into the river due to a change in geometry and volume of the volcanic aquifer. In that part of the river, radon concentration increased only in March, due to the fast transition of the groundwater from a high to a lower radon emanation unit. Radon decreased along the valley due to atmospheric evasion, as confirmed by pH growth due to CO2 degassing.
2025
Istituto di Geologia Ambientale e Geoingegneria - IGAG
groundwater; river water; discharge; radon; tracer; Rome; Caffarella Valley
File in questo prodotto:
File Dimensione Formato  
water-17-01555-Caffarella 2025.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/544781
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact