Lung cancer and chronic respiratory diseases are among the leading causes of death worldwide. Key factors in their pathogenesis include reactive oxygen species (ROS), transforming growth factor-β1 (TGF-β1) and epithelial-mesenchymal transition (EMT). Exogenous antioxidants can mitigate the oxidative stress that drives TGF-β1-mediated respiratory pathologies. Given their role in cellular communication and natural biocompatibility, extracellular vesicles (EVs) are emerging as promising candidates for the delivery of therapeutic cargo to pathological cells. Notably, microalgal-derived EVs (i.e., nanoalgosomes) have been shown to exhibit antioxidant and anti-inflammatory activity. In this study, the bioactivity of EVs derived from Tetraselmis chuii (CCAP 66/21B) was investigated in a bleomycin-stressed (8 µg mL−1) human adenocarcinoma alveolar epithelial cell model (A549). Moreover, the effects of these EVs were compared to liposomes loaded with established therapeutics (pirfenidone and quercetin), synthesised using the lipid film hydration method. In vitro assessments included cell viability (MTS), intracellular ROS, morphological changes, cell migration, EMT-related mRNA expression (qPCR), and TGF-β1 release (ELISA). Both the EVs (nanoalgosomes) and pirfenidone- and quercetin-loaded liposomal nanocarriers (1–4 µg mL−1) effectively attenuated bleomycin-induced EMT, inhibited cell migration, suppressed profibrotic TGF-β1, lowered intracellular ROS and upregulated glutathione peroxidase 4 (GPX4). Importantly, the innate bioactive cargo of the naturally derived nanoalgosomes exhibited comparable effects to the liposome therapeutic formulations in mitigating bleomycin-induced stress in A549 cells.

Comparative effects of extracellular vesicles and liposomal nanocarriers on bleomycin-induced stress in A549 human adenocarcinoma cells

Picciotto, Sabrina;Adamo, Giorgia;Bongiovanni, Antonella;
2025

Abstract

Lung cancer and chronic respiratory diseases are among the leading causes of death worldwide. Key factors in their pathogenesis include reactive oxygen species (ROS), transforming growth factor-β1 (TGF-β1) and epithelial-mesenchymal transition (EMT). Exogenous antioxidants can mitigate the oxidative stress that drives TGF-β1-mediated respiratory pathologies. Given their role in cellular communication and natural biocompatibility, extracellular vesicles (EVs) are emerging as promising candidates for the delivery of therapeutic cargo to pathological cells. Notably, microalgal-derived EVs (i.e., nanoalgosomes) have been shown to exhibit antioxidant and anti-inflammatory activity. In this study, the bioactivity of EVs derived from Tetraselmis chuii (CCAP 66/21B) was investigated in a bleomycin-stressed (8 µg mL−1) human adenocarcinoma alveolar epithelial cell model (A549). Moreover, the effects of these EVs were compared to liposomes loaded with established therapeutics (pirfenidone and quercetin), synthesised using the lipid film hydration method. In vitro assessments included cell viability (MTS), intracellular ROS, morphological changes, cell migration, EMT-related mRNA expression (qPCR), and TGF-β1 release (ELISA). Both the EVs (nanoalgosomes) and pirfenidone- and quercetin-loaded liposomal nanocarriers (1–4 µg mL−1) effectively attenuated bleomycin-induced EMT, inhibited cell migration, suppressed profibrotic TGF-β1, lowered intracellular ROS and upregulated glutathione peroxidase 4 (GPX4). Importantly, the innate bioactive cargo of the naturally derived nanoalgosomes exhibited comparable effects to the liposome therapeutic formulations in mitigating bleomycin-induced stress in A549 cells.
2025
Istituto per la Ricerca e l'Innovazione Biomedica -IRIB
Pulmonary pharmacologyLung disease and cancerNanocarriersExtracellular vesiclesMicroalgal EVsNanoalgosomesLiposomesPirfenidoneQuercetin
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0753332225002756-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 13.08 MB
Formato Adobe PDF
13.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/545323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact