Background: Harvested wood products (HWPs) have a pivotal role in climate change mitigation, a recognition solidified in many Nationally Determined Contributions (NDCs) under the Paris Agreement. Integrating HWPs' greenhouse gas (GHG) emissions and removals into accounting requirements relies on typical decision-oriented tools known as wood product models (WPMs). The study introduces the TimberTracer (TT) framework, designed to simulate HWP carbon stock, substitution effects, and emissions from wood decay and bioenergy. Results: Coupled with the 3D-CMCC-FEM forest growth model, TimberTracer was applied to Laricio Pine (Pinus nigra subsp. laricio) in Italy's Bonis watershed, evaluating three forest management practices (clearcut, selective thinning, and shelterwood) and four wood-use scenarios (business as usual, increased recycling rate, extended average lifespan, and a simultaneous increase in both the recycling rate and the average lifespan) over a 140 year planning horizon, to assess the overall carbon balance of HWPs. Furthermore, this study evaluates the consequences of disregarding landfill methane emissions and relying on static substitution factors, assessing their impact on the mitigation potential of various options. This investigation, covering HWPs stock, carbon (C) emissions, and the substitution effect, revealed that selective thinning emerged as the optimal forest management scenario. In addition, a simultaneous 10% increase in both the recycling rate and half-life, under the so-called "sustainability" scenario, proved to be the optimal wood-use strategy. Finally, the analysis shows that failing to account for landfill methane emissions and the use of dynamic substitution can significantly overestimate the mitigation potential of various forest management and wood-use options, which underscores the critical importance of a comprehensive accounting in climate mitigation strategies involving HWPs. Conclusions: Our study highlights the critical role of harvested wood products (HWPs) in climate change mitigation, as endorsed by multiple Nationally Determined Contributions (NDCs) under the Paris Agreement. Utilizing the TimberTracer framework coupled with the 3D-CMCC-FEM forest growth model, we identified selective thinning as the optimal forest management practice. Additionally, enhancing recycling rates and extending product lifespan effectively bolstered the carbon balance. Moreover, this study emphasizes the necessity of accounting for landfill methane emissions and dynamic product substitution, as failing to do so may significantly overestimate the mitigation potential of implemented projects. These findings offer actionable insights to optimize forest management strategies and advance climate change mitigation efforts.

TimberTracer: a comprehensive framework for the evaluation of carbon sequestration by forest management and substitution of harvested wood products

Collalti, A.
;
Dalmonech, D.;
2025

Abstract

Background: Harvested wood products (HWPs) have a pivotal role in climate change mitigation, a recognition solidified in many Nationally Determined Contributions (NDCs) under the Paris Agreement. Integrating HWPs' greenhouse gas (GHG) emissions and removals into accounting requirements relies on typical decision-oriented tools known as wood product models (WPMs). The study introduces the TimberTracer (TT) framework, designed to simulate HWP carbon stock, substitution effects, and emissions from wood decay and bioenergy. Results: Coupled with the 3D-CMCC-FEM forest growth model, TimberTracer was applied to Laricio Pine (Pinus nigra subsp. laricio) in Italy's Bonis watershed, evaluating three forest management practices (clearcut, selective thinning, and shelterwood) and four wood-use scenarios (business as usual, increased recycling rate, extended average lifespan, and a simultaneous increase in both the recycling rate and the average lifespan) over a 140 year planning horizon, to assess the overall carbon balance of HWPs. Furthermore, this study evaluates the consequences of disregarding landfill methane emissions and relying on static substitution factors, assessing their impact on the mitigation potential of various options. This investigation, covering HWPs stock, carbon (C) emissions, and the substitution effect, revealed that selective thinning emerged as the optimal forest management scenario. In addition, a simultaneous 10% increase in both the recycling rate and half-life, under the so-called "sustainability" scenario, proved to be the optimal wood-use strategy. Finally, the analysis shows that failing to account for landfill methane emissions and the use of dynamic substitution can significantly overestimate the mitigation potential of various forest management and wood-use options, which underscores the critical importance of a comprehensive accounting in climate mitigation strategies involving HWPs. Conclusions: Our study highlights the critical role of harvested wood products (HWPs) in climate change mitigation, as endorsed by multiple Nationally Determined Contributions (NDCs) under the Paris Agreement. Utilizing the TimberTracer framework coupled with the 3D-CMCC-FEM forest growth model, we identified selective thinning as the optimal forest management practice. Additionally, enhancing recycling rates and extending product lifespan effectively bolstered the carbon balance. Moreover, this study emphasizes the necessity of accounting for landfill methane emissions and dynamic product substitution, as failing to do so may significantly overestimate the mitigation potential of implemented projects. These findings offer actionable insights to optimize forest management strategies and advance climate change mitigation efforts.
2025
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo - ISAFOM
HWPs, NDCs, GHG, WPMs, TimberTracer (TT)
File in questo prodotto:
File Dimensione Formato  
s13021-025-00296-2.pdf

accesso aperto

Descrizione: TimberTracer: a comprehensive framework for the evaluation of carbon sequestration by forest management and substitution of harvested wood products
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.77 MB
Formato Adobe PDF
5.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/545801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact